2.7 The Derivative of $y = e^x$ and $y = b^x$

Derivative of $y = e^x$:

Proof:
$$f(x) = e^{x}$$

$$f(x+h) = e^{x+h}$$

$$f'(x) = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h}$$

$$= \lim_{h \to 0} \frac{e^{x} \cdot e^{h} - e^{x}}{h}$$

$$= e^{x} \cdot \lim_{h \to 0} \frac{e^{h} - 1}{h}$$

$$= e^{x} \cdot 1$$

$$= e^{x}$$

The derivative of $y = e^x$ is $\frac{dy}{dx} = e^x$.

The derivative of $y = e^{f(x)}$ is $\frac{dy}{dx} = e^{f(x)} \cdot f'(x)$.

Chain rule!

Ex. 1 Determine the derivative.

a)
$$f(x) = e^{5x}$$

 $f'(x) = e^{5x}(5)$
 $= 5e^{5x}$

f(x) =
$$e^{5x}$$

f'(x) = e^{5x} (5)
 $= e^{5x}$ (5)
 $= e^{3x^2-5x+2}$ (6x-5)

c)
$$y = 3x^2e^x$$
 Product rule!
 $y' = 6x e^x + 3x^2e^x$

c)
$$y = 3x^{2}e^{x}$$
 rule!
d) $h(t) = 3et^{2} + e^{-2t}$
 $y' = 6x e^{x} + 3x^{2}e^{x}$
 $h'(t) = 6et + e^{-2t}$
 $= 6et - 2e^{-2t}$

$$f'g - fg'$$

$$g^{2}$$
e) $h(x) = \frac{e^{x}}{x}$

$$h'(x) = e^{x} \cdot x - e^{x}(1)$$

$$x^{2}$$

$$= \frac{e^{x}(x-1)}{x^{2}}$$

e)
$$h(x) = \frac{e^{x}}{x}$$
 f) $k(m) = \frac{1 + e^{2m}}{2e^{m}}$
 $h'(x) = e^{x} \cdot x - e^{x}(1)$ $\chi'(m) = \frac{e^{2m}(2) \cdot (2e^{m}) - 2e^{m}(1 + e^{2m})}{(2e^{m})^{2}}$

$$= \frac{e^{x}(x-1)}{x^{2}}$$

$$= \frac{e^{x}(x-1)}{x^{2}}$$

$$= \frac{e^{2m}(2e^{m})^{2}}{(2e^{m})^{2}}$$

$$= \frac{e^{2m}(1-e^{2m})}{2e^{m}}$$

Recall:

$$\int \frac{d}{dx} a^x = a^x \ln a$$

$$\left(\frac{d}{dx}a^{f(x)}=a^{f(x)}\ln a\cdot f'(x)\right)$$

Ex. 3 Determine the derivative.

a)
$$y = 7^{\times}$$

b)
$$y = 5^{3x}$$

c)
$$y = 3(2)^{x+1}$$

$$y' = 7^{x} \cdot l_{n} 7 \cdot (1)$$

$$y' = 5^{3x} \cdot l_{n} \cdot 5 \cdot (3)$$

= $3 l_{n} \cdot 5 \cdot 5^{3x}$

$$y' = 7^{x} \cdot \ln 7 \cdot (1)$$
 $y' = 5^{3x} \cdot \ln 5 \cdot (3)$ $y' = 3(2)^{x+1} \cdot \ln 2 \cdot (1)$
= $3 \ln 5 \cdot 5^{3x}$ = $3 \ln 2 \cdot 2^{x+1}$

d)
$$y = 11^{5x^2 - 7x + 3}$$
 e) $f(x) = 50 (1.02)^{4x}$
 $y' = 11^{5x^2 - 7x + 3}$ (1) $(10x - 7)$ $f'(x) = 50(1.02)^{4x}$ In 1.02 (4)

e)
$$f(x) = 50 (1.02)^{4x}$$

$$f'(\gamma) = 50(1.02)^{4\gamma} \cdot \ln 1.02 (4)$$

= 200 ln 1.02 (1.02)⁴

f)
$$f(x) = 7e^{x}$$

 $f'(\gamma) = 7e^{x}$

g)
$$f(x) = \frac{2^{4x}}{x^3}$$

$$f'(x) = \frac{2^{4x} \ln 2 \cdot 4 \cdot x^3 - 2^{4x} 3x^2}{x^6}$$

$$f'g + fg'$$
h) $f(x) = x^3 \cdot 3^x$

$$=\frac{2^{4/x}(4ln2\cdot x-3)}{x^4}$$

 $=\frac{2^{4\chi}\chi^{2}(4\ln 2\cdot \chi-3)}{\chi^{6}4}$

$$f'(x) = 3x^{2} \cdot 3^{x} + x^{3} \cdot 3^{x} \ln 3$$
$$= x^{2} \cdot 3^{x} (3 + \ln 3 \cdot x)$$

Ex. 4 Determine the equation of the tangent to $f(x) = 3^x$ where x = 2.

$$f'(x) = 3^{x} ln 3$$

$$m_{ton}|_{y=2} = 3^2 l_n 3$$
 $g(x) = 9 l_n 3$

$$f(2) = 9$$

... $(2,9)$

Sub
$$(2,9)$$
 and $m=9ln3$
into $y=mx+b$

$$9 = 9 \ln 3(2) + 6$$

 $6 = 9 - 18 \ln 3$

$$\circ \cdot \cdot y = 9 \ln 3 \cdot \chi + 9 - 18 \ln 3$$

Homework page 232 #2adef, 3, 7, & page 240 #1, 2bd, 3, 4, 6, &

Top In(e^10) reasons why e is better than pi

- 10) e is easier to spell than pi.
- 9) pi ~= 3.14 while e ~=2.718281828459045.
- 8) The character for e can be found on a keyboard, but pi sure can't.
- 7) Everybody fights for their piece of the pie.
- 6) $ln(pi^1)$ is a really nasty number, but $ln(e^1) = 1$.
- 5) e is used in calculus while pi is used in baby geometry.
- 4) 'e' is the most commonly picked vowel in Wheel of Fortune.
- 3) e stands for Euler's Number, pi doesn't stand for squat.
- 2) You don't need to know Greek to be able to use e.
- 1) You can't confuse e with a food product.

graph

Ex. 2 Determine the equation of the tangent to $f(x) = 3xe^{-x}$ at x = -1.