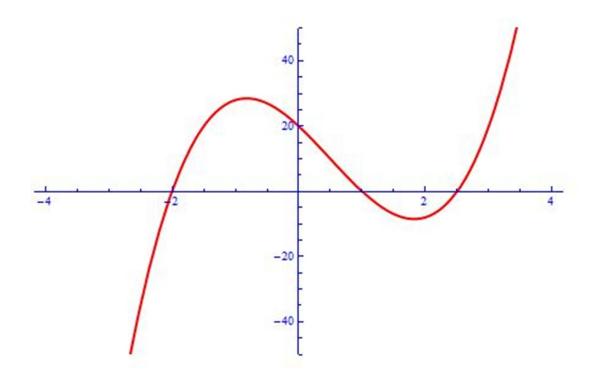
4.4 Concavity and Points of Inflection

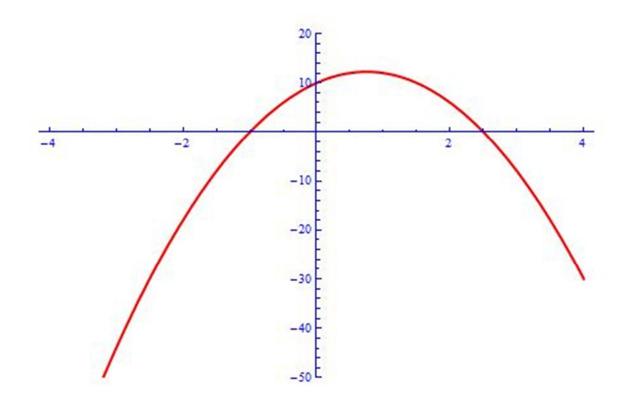
Recall that concave means to bend "away" from the perspective of observation.

Consider the sketch of the graph of f(x)



Q. How can we determine when an algebraic representation of a function is concave up or concave down?

Consider the Picture



Second Derivative Test

If x = c is a critical value of some **twice differentiable** function f(x) (i.e. f'(c) = 0), then

If
$$f''(c) > 0$$
, $x = c$

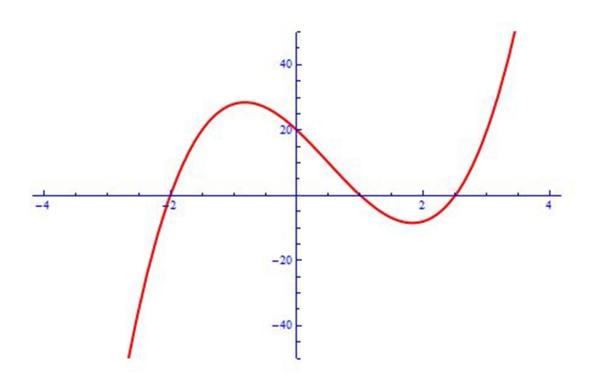
If
$$f''(c) < 0$$
, $x = c$

Note: Sometimes the Second Derivative Test tells us nothing!

Consider the following:

Given $f(x) = x^4$, determine and critical values, and use the Second Derivative Test to determine whether the c.v.(s) are locations of local maxima and/or minima. Q. Well then, what is happening when f''(x) = 0?

Consider the following Picture:



Definition 4.4.1

Given a twice differentiable function, f(x), for any value x = c where f''(c) = 0, we call x = c a possible point of inflection.

A **Point of Inflection** is where a function's **concavity changes** (and since functional behaviour changes, P.O.I.'s are also considered "critical"!)

Example 4.4.1

Given $f(x) = x^3 - \frac{5}{2}x^2 - 2x + 1$ determine all c.v.'s. Use the Second Derivative Test for max/min. Determine any P.P.O.I, and state intervals of concavity.

Class/Homework for Section 4.4 Pg. 205 – 206 #2 – 5, 7 – 11