

- Voltage is the force that pushes an electrical current (electrons).
- In most cases, voltage is provided by a power source.
 - Represented by letter V
- Higher voltage indicates a greater electrical force.
- Voltage is measured using a voltmeter.

- Current is the rate of electron flow or current in an electrical conductor.
- Measured in amperes or "amps".
 - Represented by letter A
- Electrical current is measured using an ammeter.

opyright Teacher Resource Cabin

- Voltage provided by a source, like a battery, will attempt to make an electrical current.
- Electrical current is only possible with a complete circuit
- In a direct current (DC), the direction of the current is always the same.

• The following symbols are used in DC circuit diagrams:

Copyright Teacher Resource Cabin

Component	Drawing	Explanation
Lamp		A transducer which converts electrical energy to light
Resistor		A resistor restricts the flow of charge
One Cell	\dashv	A single battery cell
Three Cell	-	A collection of battery cells (three)

Component	Drawing	Explanation
Open Switch		A switch that is open
Closed Switch		A switch that is closed
Fuse		A safety device which will 'blow' (melt) if the current flowing through it exceeds a specified value

Component	Drawing	Explanation
Buzzer		A transducer which converts electrical energy to sound
Motor	2	A transducer which converts electrical energy to kinetic energy (motion)
Bell		A transducer which converts electrical energy to sound

Think about it!

Drag and drop each circuit symbol to the correct image.

SERIES GRAVITS: VOLTAGE AND GURRENT

- In a series circuit, the resistance of the circuit will increase as the number of lamps in the circuit increases.
- A series circuit with only one lamp will receive the full voltage of the current flow.
 - However, as the number of lamps increase, so will the resistance of the current.

SERIES CIRCUITS: VOLTAGE AND CURRENT

- The circuit in Diagram #1 shows three 60 W lamps connected to 120 V.
- Since these lamps are in a series circuit, each lamp would only receive one-third of the electrical current.
- Note: This is only the case if the same lamps are used.

How would the brightness of the lights in Diagram #1 compare to Diagram #2?

 Three factors affect the amount of flow in an electrical current:

The number of lamps or components in a circuit

The resistance of each component in a circuit

3

The number of cells (e.g. batteries) in a circuit

 The current will always be the same in a circuit regardless of where the ammeter is attached.

 The sum of the voltage in each of the components of a circuit will equal the voltage of the cell.

- The sum of the resistance of each component of a circuit will equal the total resistance of the circuit.
- The resistance of a component is measured using an ohmmeter.
 - An ohmmeter is an instrument for indicating resistance in ohms directly.

R total (Total Resistance) = R1 + R2....

Ohm Symbol

An analog ohmmeter

What is an ohmmeter?

How can a current's total flow be determined?

Ω Ohm Symbol

