# ORGANIC CHEMISTRY LESSON 6 Carboxylic Acids and Esters

#### **Primary Learning Goals**

I can use IUPAC conventions to write systematic names and draw structures for carboxylic acids and esters.

I can name, describe, and recognise various chemical reactions involving carboxylic acids and esters, and predict the products of these reactions.

# Carboxylic Acids

Generic Structure: R—C—O—H

Functional Group: carboxyl group (—COH)

Nomenclature: "-oic acid" suffix

<u>examples</u>

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COH butanoic acid

HCOH
methanoic acid
(formic acid)

OH O CH<sub>3</sub>CH<sub>2</sub>CHCH<sub>2</sub>CH<sub>2</sub>COH 4-hydroxyhexanoic acid

#### Reactions:

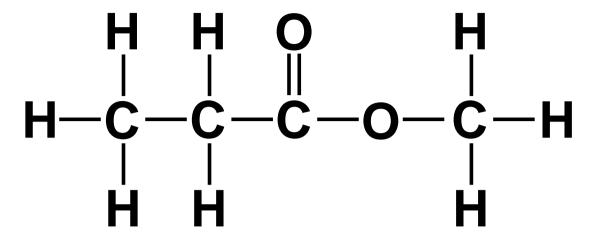
1. Controlled oxidation of an aldehyde produces a carboxylic acid.

O  

$$| | Cr_2O_7^{2-} > CH_3COH$$
  
(aldehyde)  $| Cr_2O_7^{2-} > CH_3COH$   
(carboxylic acid)

2. Neutralization reaction between a carboxylic acid and a base.

O O 
$$||$$
 CH<sub>3</sub>COH + NaOH  $\longrightarrow$  CH<sub>3</sub>CO $^-$  Na $^+$  + H<sub>2</sub>O ethanoic acid (acetic acid) sodium ethanoate (sodium acetate)

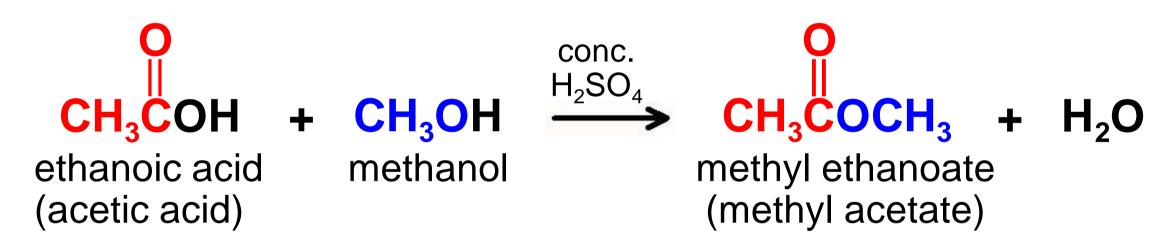

## **Esters**

Generic Structure: R—C—O—R′

Functional Group: ester group (—CO—)

Nomenclature: "-oate" suffix with alkyl branch

### examples




methyl propanoate

# CH<sub>3</sub>COCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> hexyl ethanoate

#### **Reactions:**

1. A condensation reaction between a carboxylic acid and an alcohol produces an ester.



"esterification"