MCR3U Unit 1: Introduction to functions

Lesson 1: What is a function?

Learning Goals:

I will be able to:

- ✓ State the characteristics of a function
- ✓ Distinguish between functions and relations using mappings, tables of values, graphs and equations.
- ✓ Use proper function notation
- ✓ Evaluate functions for given values

What is a relation?

A set of ordered pairs (x, y) that are related by a certain rule are called a relation in x and y. A relation may be defined as a set of ordered pairs, such as (1, 2). (-3,4), (1, -4), (3, 4) A relation may also be defined as by a mapping. e.g.,

Example 1: Analyzing a relation

The data in Table shows the length of a woman's femur and her corresponding height. Based on these data, a forensics specialist can find a linear relationship between height y, in inches, and femur length x, in centimeters:

$$y = 0.906x + 24.3$$
 $40 \le x \le 55$

From this type of relationship, the height of a woman can be inferred based on skeletal remains.

Length of Femur (cm)	Height (in.)
X	y
45.5	65.5
48.2	68.0
41.8	62.2
46.0	66.0
50.4	70.0

- a) Find the height of a woman femur is 46.0 cm.
- b) Find the height of a woman whose femur is 51.0cm.

What is a function?

A function is a rule that operates on an input and creates an output. We can think of a function as a mathematical machine that takes input and processes it, using a given rule, and produces and output.

In order for a rule to be a function it must produce only one output for each input. All functions are relations but not all relations are functions.

Functions vs. Relations

Example 2: Determining whether a relation is a function. (i.e., determine which of the relations define y as a function of x).

b. x y 3 4 2 -1 3 -2

c.

d. {(4, 2), (-5, 4), (0, 0), (8, 4)}

The vertical line test

The vertical line test is:

Consider a relation defined by a set of point (x, y) in a rectangular coordinate system. The graph defines y as a function of x if no vertical line intersects the graph in more than one point.

Example 3: Use the vertical line test to determine whether the following relations defined y as a function of x.

Function notation

Say, the function y = 2x, it takes the set of x values and doubles them to obtain the set of y values.

This can also be written in function notation, f(x) = 2x.

- This means the name or the rule of the function is f and the input is x.
- This is read as "f at x".
- The value of the function f, at x, is 2x.

Other example of functions:

•
$$f(x) = 3x^2 - 2x + 1$$

•
$$h(x) = -4.9t^2 - 4$$

•
$$P(x) = (500 - 2x)(300 + x)$$

Sometimes, under certain context or scenario, certain letter will be used, such as:

- h(t) height as a function of time
- h(d) height as a function of distance
- v(t) velocity as a function of time
- d(t) distance as a function of time
- P(x) profit as a function of items sold

Example 4: Evaluating a function

Given the function defined by $g(x) = \frac{1}{2}x - 1$, find the function values.

- a) g(0)
- b) g(2)
- c) g(4)
- d) g(-2)

Example 5: Evaluating functions

Given the functions defined by $f(x) = x^2 - 2x$ and g(x) = 3x + 5. Find the function values.

- a) f(t)
- b) g(w + 4)
- c) f(-t)

Example 6: finding function values from a graph

Consider the function pictured in the Figure.

- a) Find h(-1).
- b) Find h(2).
- c) For what value of x is h(x) = 3?
- d) For what value of x is h(x) = 0?

Arithmetic combination of functions

Sum, difference, product, and quotient of functions

Let f and g be two functions with overlapping domains. Then, for all x common to both domains, the sum, difference, product, and quotient of f and g are defined as follows.

- 1. (f+g)(x) = f(x) + g(x)
- 2. (f-g)(x) = f(x) g(x)
- 3. $(fg)(x) = f(x) \times g(x)$
- 4. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$

Composite function

Definition of composition of two functions: the composition of the function f with the function g is:

$$(f \circ g)(x) = f(g(x))$$

The composition is obtained by taking the output of g(x) and using it as input for f(x).

The notation can be read as: f circle g, f round g, f composed with g, f after g, f following g, f after g, etc.

Composing two functions is a chain process in which the output of the inner function becomes the input of the outer function.

Example 7: Given f(x) = x + 2 and $g(x) = 4 - x^2$, find the following.

- a) $(f \circ g)(x)$
- b) $(g \circ f)(x)$
- c) $(g \circ f)(-2)$