MCR3U Unit 1: Introduction to functions

Lesson 1.2: Domain/range

Part 1: Basic parent functions

Learning Goals:

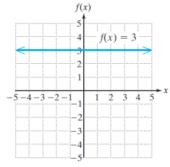
I will be able to:

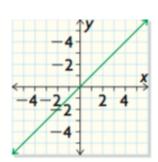
√ identify, graph, and state the characteristics of the 6 basic parent functions

Linear and constant functions

Definition of a linear function and a constant function – Let \mathbf{m} and \mathbf{b} represent real numbers. Then, A function that can be written in the form f(x) = mx + b is a linear function. A function that can be written in the form f(x) = b is a constant function.

Note: The graphs of linear and constant functions are lines.





Quadratic functions and cubic functions

$$f(x) = x^2$$

$$f(x) = x^3$$

Absolute value functions: f(x) = |x|

Square root functions: $f(x) = \sqrt{x}$

Reciprocal functions: $f(x) = \frac{1}{x}$

Part 2: Domain and Range

Learning Goals:

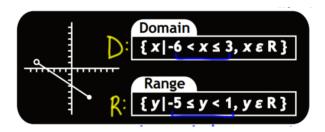
I will be able to:

- ✓ given a function in function notation or in graphical form, state the domain and range
- ✓ write the domain and range in proper notation
- ✓ state and asymptotes that exist for a function
- ✓ relate a "piecewise" function given in function notation to its graph

Domain and Range

The domain of a function, f(x), is the set of all allowable x values. The range of a function is the set of all y values.

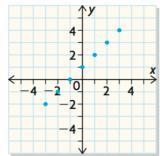
Notation:

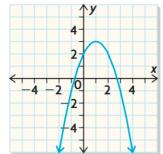


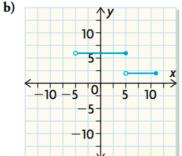
x's such that x is greater than -6 and less than or equal to 3 and x is an element of the reals. y's such that y is greater than or equal to -5 and less than 1 and y is an element of the real number system.

Example 1: State the domain and range if you are given a graph.

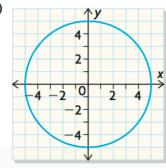
a)







d)

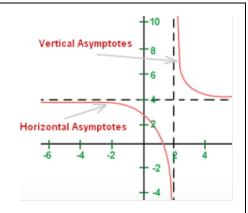


What is an asymptote? An asymptote is a line that a graph gets closer and closer to but never touches or crosses.

Example 2: Find the domain of the functions if you are given an equation. Think about asymptotes

$$f(x) = \frac{x+7}{2x-1}$$
 $g(x) = \frac{x-4}{x^2+9}$

$$g(x) = \frac{x-4}{x^2+9}$$



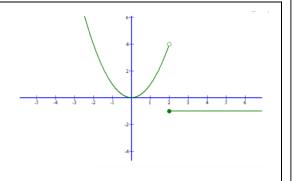
$$k(t) = \sqrt{t+4} \qquad \qquad h(t) = t^2 - 3t$$

$$h(t) = t^2 - 3t$$

Piecewise functions

A function, f(x), can be in pieces.

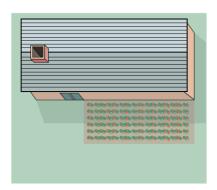
For different intervals of x, the function can be defined differently.



Example 3:

Vitaly and Sherry have 24 m of fencing to enclose a rectangular garden at the back of their house.

- a) Express the area of the garden as a function of its width.
- **b**) Determine the domain and range of the area function.



Homework: pg. 35 – 37. #2, 4, 5, 9 – 14, 17

MCR3U Unit 1: Introduction to functions Lesson 1.3: Transformation of functions

Learning Goals:

I will be able to:

- perform in the correct order, transformations on parent functions to obtain a new function
- recognize the transformations that have occurred to result in a given function

Summary of Transformations

You will recall that we have the following basic ("parent") functions:

f(x) = x \rightarrow A (non-vertical) straight line

 $f(x) = x^2$ \rightarrow A parabola that opens upwards and has it vertex at the origin.

 $f(x) = \sqrt{x}$ \rightarrow The upper half of a sideways parabola with its vertex at the origin.

 $f(x) = \frac{1}{x}$ \rightarrow A hyperbola with asymptotes at x = 0 and y = 0. Only in quadrants 1 & 3.

f(x) = |x| \rightarrow A linear relationship with negative slope to the left of the origin and a positive slope to the right of the origin.

Transformations turn one of the parent graphs, y = f(x) into a new graph whose equation can be written in the form

$$y = af[k(x - d)] + c$$

where f(x) is one of the parent functions listed above. The transformations can be determined by examining the various parameters in this equation.

Parameter	Value	Effect on Graph
а	negative $(a < 0)$	Reflected over the x-axis
	0 < a < 1	Vertical compression
	a > 1	Vertical stretch
k (NEW!!!)	negative $(k < 0)$	Reflected over the y-axis
	0 < k < 1	Horizontal <i>stretch</i> by the factor $\frac{1}{ k }$
	k > 1	Horizontal <i>compression</i> by the factor $\frac{1}{ k }$
d (was h for a quadratic)	positive $(d > 0)$	Horizontal shift (translation) d units right
	negative $(d < 0)$	Horizontal shift d units left
c (was k for a quadratic)	positive $(c > 0)$	Vertical shift (translation) c unit up
	negative $(c < 0)$	Vertical shift c units down

What if more than one of the above transformations is to be applied? Does the order in which they are applied matter? Yes, it does. Note the following:

1. Horizontal and vertical transformations are *independent of each other*. The parameters *k* and *d* affect *only* the horizontal characteristics of the graph; the parameters *a* and *c* affect only the vertical characteristics of the graph (direction of opening, stretch/compression, and position). This means that you can apply the horizontal transformations (if any) and then the vertical ones, or vice-versa.

2. When working with either vertical or horizontal transformations, always apply the translations *last*. This means that you must apply *k* before *d*, and *a* before *c*.

For an example which applies all the transformations in one question, see Example 1 on page 61.

The function defined by y = af[k(x - d)] + c describes the transformation of the graph of f(x). How the equation for the transformed function looks depends on the parent function:

When
$$f(x) = x$$
 \Rightarrow transformed equation is $y = a(k(x - d)) + c$
When $f(x) = x^2$ \Rightarrow transformed equation is $y = a(k(x - d))^2 + c$
When $f(x) = \sqrt{x}$ \Rightarrow transformed equation is $y = a\sqrt{k(x - d)} + c$
When $f(x) = \frac{1}{x}$ \Rightarrow transformed equation is $y = \frac{a}{k(x - d)} + c$
When $f(x) = |x|$ \Rightarrow transformed equation is $y = a|k(x - d)| + c$

Important Notes:

→ Before transformations can be applied, you *must* make the *x* coefficient equal to 1 (if it isn't already) by factoring the expression inside the *f*() brackets to obtain the correct value for *d*:

$$y = af[k(x - d)] + c$$

k is factored out; x coefficient is equal to 1

So, for example, if we had the equation

we would first factor the expression inside the brackets to get

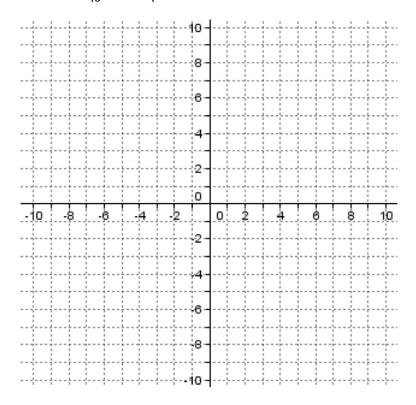
$$y = f[2(x - 3)]$$
 \leftarrow the x coefficient is now equal to 1; $d = 3$

before proceeding to do any transformations. Note that sometimes doing the factoring will cause d to be a fraction.

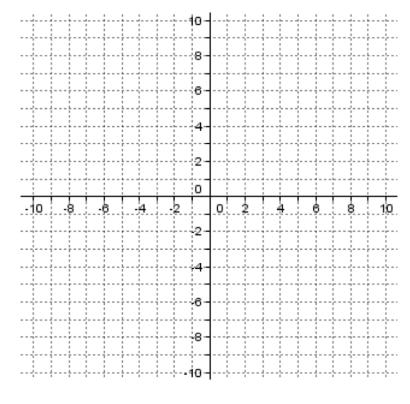
- → When graphing by hand, a more accurate graph can be drawn by plotting:
 - o the point(s) where the line or curve intersects the x or y axis and/or
 - o points on the line or curve which have x and y coordinates which are integers or simple decimals which can be plotted accurately given the scale you are using (ex. (5, 8) is a point which is easy to plot accurately, while (5.8347, 7.4920) is not).

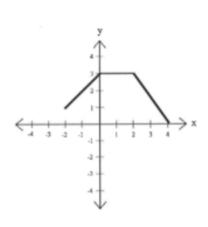
Let's try ourselves: Draw and list the steps of transformation required.

1)
$$f(x) = -2 \left| \frac{1}{3}(x+2) \right| + 1$$



2)
$$y = \frac{1}{2}f[-(x+1)] - 2$$





Homework: Read textbook pg67. example 4 and summary on pg69. Work on pg70 – 73. #1, 2, 7a, 8bc, 9bc, 11, 12, 13, 15, 16, 17, 18, 19, 20,