MCR3U Unit 1: Introduction to functions

Lesson 1.4: The inverse function

Learning Goals:

I will be able to:

- given a function in equation form, find its inverse
- given a function in graphical form, find its inverse

The inverse function

Let f(x) be a one-to-one function. Then $f^{-1}(x)$ is the inverse function of f(x).

Domain and ranges of inverse functions:

- The domain of f(x) is equal to the range of $f^{-1}(x)$.
- The range of f(x) is equal to the domain of $f^{-1}(x)$.

Steps of finding the inverse of f(x)

- 1) exchange the x and y values of f(x)
- 2) rearrange the equation to isolate for y.
- 3) the resulting equation is the inverse of f(x).

Example 1:

- a) Find the inverse of, $g(x) = \frac{1}{x} 2$, algebraically.
- b) Find the inverse of, $g(x) = \sqrt[3]{x} 3$, algebraically.
- c) Plot the pair of each functions in Desmos and see what similarity do you notice graphically.

Example 2: Graph the inverse of $y = 2(x + 4)^2 - 1$

Waterloo Euclid Contest 2013

(a) If $\frac{1}{\cos x} - \tan x = 3$, what is the numerical value of $\sin x$?

(b) Determine all linear functions f(x) = ax + b such that if $g(x) = f^{-1}(x)$ for all values of x, then f(x) - g(x) = 44 for all values of x. (Note: f^{-1} is the inverse function of f.)

Practice:

Read textbook 1.5 - The inverse function and its properties

Work on pg. 46 # 1, 2, 3, 8, 9, 10, 16, 17