Chapter 4: Exponential functions

Lesson 4.1: Exponent laws and simplify exponential expressions

Summary of **Exponent Law** (when bases are the **SAME**!)

When multiplying powers with the same base, add exponents.

$$b^m \times b^n = b^{m+n}$$

When dividing powers with the same base, subtract exponents.

$$b^m \div b^n = b^{m-n}$$
 if $b \neq 0$

To raise a power to a power, multiply exponents.

$$(b^m)^n = b^{mn}$$

✓ An integer base raised to a negative exponent is equivalent to the reciprocal of the same base raised to the opposite exponent.

$$b^{-n} = \frac{1}{b^n}$$
, where $b \neq 0$

A fractional base raised to a negative exponent is equivalent to the reciprocal of the same base raise to the opposite exponent.

$$\left(\frac{a}{b}\right)^{-n} = \frac{1}{\left(\frac{a}{b}\right)^n} = \left(\frac{b}{a}\right)^n$$
, where $a \neq 0$, $b \neq 0$

- A number raised to a rational exponent is equivalent to a radical. The rational exponent $\frac{1}{n}$ indicates the *n*th root of the base. If n > 1 and $n \in N$, then $b^{\frac{1}{n}} = \sqrt[n]{b}$, where $b \neq 0$.
- If the numerator of a rational exponent is not 1, and if m and n are positive integers, then $b^{\frac{m}{n}} = (\sqrt[q]{b})^m = \sqrt[q]{b^m}$, where $b \neq 0$.

Evaluate. Example 1:

a)
$$5^{-3}$$

b)
$$(-4)^{-2}$$
 c) -3^{-4}

c)
$$-3^{-4}$$

Example 2: Evaluate
$$\frac{3^5 \times 3^{-2}}{(3^{-3})^2}$$
.

Example 3: Express the following in radical notation. Then evaluate.

a)
$$49^{-\frac{1}{2}}$$

b)
$$(-8)^{\frac{1}{3}}$$

c)
$$10\ 000^{\frac{1}{4}}$$

Example 4: Evaluate.

a)
$$(-27)^{\frac{4}{3}}$$

Example 5: Simplify
$$\frac{(2x^{-3}y^2)^3}{(x^3y^{-4})^2}$$
 and $\frac{(27a^{-3}b^{12})^{\frac{1}{3}}}{(16a^{-8}b^{12})^{\frac{1}{2}}}$.

More practice:

5. Simplify. Express answers with positive exponents.

a)
$$(3xy^4)^2(2x^2y)^3$$

c)
$$\frac{(10x)^{-1}y^{\frac{3}{2}}}{15x^{3}y^{-3}}$$

e)
$$\frac{p^{-5}(r^3)^2}{(p^2r)^2(p^{-1})^2}$$

b)
$$\frac{(2a^3)^2}{4ab^2}$$

$$\mathbf{d)} \quad \frac{(3m^4n^2)^2}{12m^{-2}n^6}$$

a)
$$(3xy^4)^2(2x^2y)^3$$
 c) $\frac{(10x)^{-1}y^3}{15x^3y^{-3}}$ e) $\frac{p^{-5}(r^3)^2}{(p^2r)^2(p^{-1})^2}$
b) $\frac{(2a^3)^2}{4ab^2}$ d) $\frac{(3m^4n^2)^2}{12m^{-2}n^6}$ f) $\left(\frac{(x^3y)^{-1}(x^4y^3)}{(x^2y^{-3})^{-2}}\right)^{-1}$

6. Simplify. Express answers with positive exponents.

a)
$$(x^4)^{\frac{1}{2}}(x^6)^{-\frac{1}{3}}$$

c)
$$\frac{\sqrt{25m^{-12}}}{\sqrt{36m^{10}}}$$

a)
$$(x^4)^{\frac{1}{2}}(x^6)^{-\frac{1}{3}}$$
 c) $\frac{\sqrt{25m^{-12}}}{\sqrt{36m^{10}}}$ e) $(\frac{(32x^5)^{-2}}{(x^{-1})^{10}})^{0.2}$

b)
$$\frac{9(c^8)^{0.5}}{(16c^{12})^{0.25}}$$

b)
$$\frac{9(c^8)^{0.5}}{(16c^{12})^{0.25}}$$
 d) $\sqrt[3]{\frac{(10x^3)^2}{(10x^6)^{-1}}}$ **f)** $\sqrt[40]{1024x^{20}}$

$$\mathbf{f)} \quad \frac{\sqrt[40]{1024x^{20}}}{\sqrt[9]{512x^{27}}}$$

9. Simplify. Express answers in rational form with positive exponents.

a)
$$(36m^4n^6)^{0.5}(81m^{12}n^8)^{0.25}$$

c)
$$\left(\frac{\sqrt{64a^{12}}}{(a^{1.5})^{-6}}\right)^{\frac{2}{3}}$$

a)
$$(36m^4n^6)^{0.5}(81m^{12}n^8)^{0.25}$$
 c) $\left(\frac{\sqrt{64a^{12}}}{(a^{1.5})^{-6}}\right)^{\frac{2}{3}}$
b) $\left(\frac{(6x^3)^2(6y^3)}{(9xy)^6}\right)^{-\frac{1}{3}}$ d) $\left(\frac{(x^{18})^{\frac{-1}{6}}}{\sqrt[5]{243x^{10}}}\right)^{0.5}$

$$\mathbf{d}) \ \left(\frac{(x^{18})^{\frac{-1}{6}}}{\sqrt[5]{243}x^{10}}\right)^{0.5}$$

10. If $M = \frac{(16x^8y^{-4})^{\frac{1}{4}}}{32x^{-2}y^8}$, determine values for x and y so that

b)
$$M > 1$$

c)
$$0 < M < 1$$
 d) $M < 0$

d)
$$M < 0$$

10. Simplify. Express answers with positive exponents.

a)
$$\frac{x^{0.5}y^{1.8}}{x^{0.3}y^{2.5}}$$

d)
$$\left(\frac{2abc^3}{(2a^2b^3c)^2}\right)^{-2}$$

a)
$$\frac{3}{x^{0.3}y^{2.5}}$$
 d) $\left(\frac{1}{(2a^2b^3c^3b^3c^$

e)
$$\frac{\sqrt[4]{81p^8}}{\sqrt{9p^4}}$$

c)
$$\frac{\sqrt{x^2y^4}}{(x^{-2}y^3)^{-1}}$$

$$\mathbf{f)} \quad \frac{\sqrt[6]{(8x^6)^2}}{\sqrt[4]{625x^8}}$$

11. Evaluate each expression for a = 2 and b = 3. Express values in rational form.

a)
$$\left(\frac{b^3}{a^2}\right)^2 \left(\frac{2a^4}{b^5}\right)$$
 b) $\sqrt{\frac{9b^3(ab)^2}{(a^2b^3)^3}}$

b)
$$\sqrt{\frac{9b^3(ab)^2}{(a^2b^3)^3}}$$