Study Aid

 For help, see Essential Skills Appendix.

	Appendix	Question
	A-4	1
pg569	A-16	2–7
	A-17	8

Tech **Support**

For help using the inverse trigonometric keys on a graphing calculator, see Technical Appendix, B-13.

SKILLS AND CONCEPTS You Need

1. Use the Pythagorean theorem to determine each unknown side length.

a) c 5 m C

2. Using the triangles in question 1, determine the sine, cosine, and tangent ratios for each given angle.

a) ∠*A*

b) ∠*D*

3. Using the triangles in question 1, determine each given angle to the nearest degree.

a) ∠*B*

b) ∠*F*

4. Use a calculator to evaluate to the nearest thousandth.

a) sin 31°

b) cos 70°

5. Use a calculator to determine θ to the nearest degree.

a) $\cos \theta = 0.3312$

b) $\sin \theta = 0.7113$

c) $\tan \theta = 1.1145$

- **6.** Mario is repairing the wires on a radio broadcast tower. He is in the basket of a repair truck 40 m from the tower. When he looks up, he estimates the **angle of elevation** to the top of the tower as 42°. When he looks down, he estimates the **angle of depression** to the bottom of the tower as 32°. How high is the tower to the nearest metre?
- 7. On a sunny day, a tower casts a shadow 35.2 m long. At the same time, a 1.3 m parking meter that is nearby casts a shadow 1.8 m long. How high is the tower to the nearest tenth of a metre?
- **8.** The **sine law** states that in any triangle, the side lengths are proportional to the sines of the opposite angles.

Use a graphic organizer to show how to use the **sine law** to calculate an unknown angle.