Lesson 4.2: CAST Rule and Angles Greater Than 90°

- The vertex of angle θ is at the _____.
- The ______ is fixed on the positive x-axis.
- The _____ rotates about the origin.
- The measure of the angle is the amount of rotation from the initial arm to the terminal arm.
- An angle is in ______ if its vertex is at the origin and its initial arm is on the positive x-axis.

- Let ______ be a point on the terminal arm of angle (in standard position.
- ullet The side _____ to $oldsymbol{\theta}$ is _____.
- The side _____ to θ is _____.
- The hypotenuse, _____, can be found using

Exploring the trig ratios on a coordinate grid:

a) If Terminal arm is in Quadrant _____

- $r^2 =$
- SOH CAH TOA
- sinΘ=
- cosΘ=
- tanΘ=
- b) If _____ Terminal arm is in Quadrant ____

- SOH CAH TOA
- sinΘ=
- cosΘ=
- tanΘ=

c) If _____ Terminal arm is in Quadrant ____

- SOH CAH TOA
- sinΘ=
- cosΘ=
- tanΘ=

Terminal arm is in Quadrant ____ SOH CAH TOA sinΘ= cosΘ= tanΘ=

The _____ tells us which trig ratios are positive and which are negative for a given quadrant .

The Principal Angle and the Reference Angle have the ______.
The only differences are with _____.

Reference triangles are drawn to the x-axis. Remember: your triangle should be part of a bowtie

Ex. 1:	Given the point P or	n a terminal a	rm, determine	$\sin \theta$, $\cos \theta$	and tan θ .
Include	e a diagram.				

a) P(3,4)

b) P(-3,4)

c) P(5,-1)

Ex. 2: Evaluate, to four decimal places. a) cos 154⁰ b) tan 230⁰

Ex. 3: Draw an angle of 125° in standard position. What is the principal angle? What is the related acute angle?

a)
$$\sin \theta = -0.26$$

b)
$$\cos \theta = 0.34$$

c)
$$\tan \theta = -2.14$$

Ex. 5: If
$$\cos \theta = \frac{-3}{\sqrt{17}}$$
 where $90^{\circ} < \theta < 180^{\circ}$, determine $\sin \theta$ and $\tan \theta$.