MCR3U Unit 6 (Chapter 7): Sequence and Series Lesson 6.1: Arithmetic and geometric sequences

Part 1: Arithmetic sequences

sequence

an ordered list of numbers

term

a number in a sequence. Subscripts are usually used to identify the positions of the terms

arithmetic sequence

a sequence that has the same difference, the **common difference**, between any pair of consecutive terms

recursive sequence

a sequence for which one term (or more) is given and each successive term is determined from the previous term(s)

general term

a formula, labelled t_n , that expresses each term of a sequence as a function of its position. For example, if the general term is $t_n = 2n$, then to calculate the 12th term (t_{12}) , substitute n = 12.

$$t_{12} = 2(12)$$

= 24

recursive formula

a formula relating the general term of a sequence to the previous term(s)

Key Ideas

Every sequence is a discrete function. Since each term is identified by its position in the list (1st, 2nd, and so on), the domain is the set of natural numbers,
 N = {1, 2, 3, ...}. The range is the set of all the terms of the sequence.
 For example, 4, 12, 20, 28, ...

Domain: {1, 2, 3, 4, ...} Range: {4, 12, 20, 28, ...}

 An arithmetic sequence is a recursive sequence in which new terms are created by adding the same value (the common difference) each time.
 For example, 2, 6, 10, 14, ... is increasing with a common difference of 4,

$$t_2 - t_1 = 6 - 2 = 4$$
 $t_3 - t_2 = 10 - 6 = 4$
 $t_4 - t_3 = 14 - 10 = 4$

and 9, 6, 3, 0, \dots is decreasing with a common difference of -3.

$$t_2 - t_1 = 6 - 9 = -3$$
 $t_3 - t_2 = 3 - 6 = -3$
 $t_4 - t_3 = 0 - 3 = -3$
 \vdots

Need to Know

- An arithmetic sequence can be defined
 - by the general term $t_n = a + (n-1)d$,
 - recursively by $t_1 = a$, $t_n = t_{n-1} + d$, where n > 1, or
 - by a discrete linear function f(n) = dn + b, where $b = t_0 = a d$. In all cases, $n \in \mathbb{N}$, a is the first term, and d is the common difference.

Example 1: Determine whether the following recursive formula defines an arithmetic sequence

a)
$$t_1 = 13, t_n = 14 + t_{n-1}$$

b)
$$t_1 = 4$$
, $t_n = t_{n-1} + n - 1$

Example 2: Determine whether each general term defines and arithmetic sequence.

a)
$$t_n = 8 - 2n$$

b)
$$t_n = n^2 - 3n + 7$$

Example 3: Connecting a specific term to the general term of an arithmetic sequence What is the 33rd term of the sequence 18, 11, 4, -3, ...?

Example 4: Solving an arithmetic sequence problem

The 7th term of an arithmetic sequence is 53 and the 11th term is 97. Determine the 100th term.

Part 2: Geometric sequences

Need to Know

- A geometric sequence can be defined
 - by the general term $t_n = ar^{n-1}$,
 - recursively by $t_1 = a$, $t_n = rt_{n-1}$, where n > 1, or
 - by a discrete exponential function $f(n) = ar^{n-1}$.

In all cases, $n \in \mathbf{N}$, a is the first term, and r is the common ratio.

Work on the investigation!