4.3 Asymptotes

We will consider three kinds of asymptotes: Vertical, Horizontal and Oblique

But first, recall that **Rational Functions** have the form

$$R(x) = \frac{P(x)}{Q(x)}$$
, $Q(x) \neq 0$, where both $P(x)$ and $Q(x)$ are polynomial functions.

We need this recall since **rational functions may give us asymptotes**, which polynomial functions will not.

Vertical Asymptotes

A rational function $R(x) = \frac{P(x)}{Q(x)}$, $Q(x) \neq 0$

may have a vertical asymptote at values for x where Q(x) = 0.

Q. When would a rational function **NOT** have a V.A. when the denominator is zero?

Definition 4.3.1

Given a rational function, f(x), whenever

Example 4.3.1

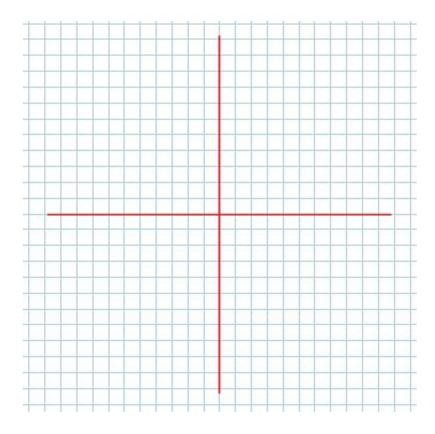
Show x = 3 is not a vertical asymptote of $f(x) = \frac{x-3}{x^2 - 5x + 6}$, whereas x = 2 is a V.A.

Horizontal Asymptotes

For **horizontal asymptotes** (H.A.'s) we are concerned with the so-called **end behaviour** of a function. That is we are wondering about the functional behaviour as

Algebraically we want to understand what is happening for $\lim_{x\to\infty} (f(x))$ and $\lim_{x\to\infty} (f(x))$

Picture



Note: There are 2 ways to approach a H.A.! (And I don't mean the two sides of infinity!!)

Example 4.3.2

Determine the H.A. (if it exists) and the functional behaviour "near" the H.A. for

$$f(x) = \frac{1}{x-2}$$

Example 4.3.3

Determine the H.A. and discuss the functional end behaviour for $g(t) = \frac{3t^2 - 5t}{4t^2 + 1}$

Notes about Limits at Infinity

1)
$$\lim_{x \to \pm \infty} \left(\frac{\text{lower degree}}{\text{higher degree}} \right) = 0$$

e.g.
$$\lim_{x \to \infty} \left(\frac{3x^2 - 5x + 1}{5x^3 + 2x^2 - 7} \right) = 0$$

2)
$$\lim_{x \to \infty} \left(\frac{\text{degree } n}{\text{degree } n} \right) = \text{a non-zero number}$$
 e.g. $\lim_{t \to \infty} \left(\frac{3t^3 - 5t + 1}{6t - 9t^3} \right) =$

e.g.
$$\lim_{t \to \infty} \left(\frac{3t^3 - 5t + 1}{6t - 9t^3} \right) =$$

3)
$$\lim_{x\to\infty} \left(\frac{\text{higher degree}}{\text{lower degree}} \right) = \infty \text{ (i.e. no H.A.)}$$

BUT

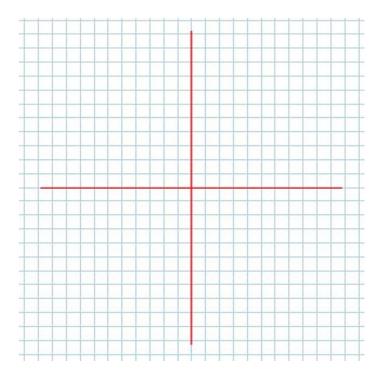
whenever we have $f(x) = \left(\frac{\text{degree }(n+1)}{\text{degree }(n)}\right)$, then we have

and we find them using **Polynomial Long Division** (Hooray!!!!!)

Example 4.3.4

Determine any asymptotes for $f(x) = \frac{3x^2 - 8x - 7}{x - 4}$.

Picture



Class/Homework for Section 4.3

(read Need to Know on pg. 192)

Pg. 193 – 195 #1 – 5, 6, 7, 9, 10, 12 – 14