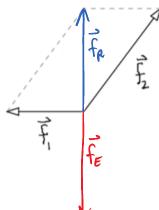
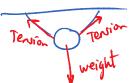

			Applications of Vectors Unit - No	otes
Tenta	tive TEST	date	on. Mary	
Some need	e of the topi know: speed is accelera the grav Newton' accelera	cs in this rate of cation is ra itational a s first law ation is	g Goals change ofdistance the of change ofvelocity / speed acceleration due to gravity of earth is v of motion states that if an object hasno_n (it is at rest or moving in a straight line all law of motion states a formula:	e with constant speed)
Сопес	tions for the te	extbook ans	swers:	
X	cess C			
X			new topics for this unit if I can do the practice que	estions in the textbook/handouts # of quest. done? You may be asked to
X	l <u>unders</u>	tand the	new topics for this unit if I can do the practice que	# of quest. done?
X	l <u>unders</u>	tand the	new topics for this unit if I can do the practice que	# of quest. done? You may be asked to
X	l <u>unders</u>	pg 2-3	Topics Forces 7 1 Velocity 7.2	# of quest. done? You may be asked to
X	l <u>unders</u>	2-3 4-5 6-7	Topics Forces 7.1 Velocity 7.2 Dot Product (Geometric) 7.3	# of quest. done? You may be asked to
X	Date	2-3 4-5 6-7 8-9	Topics Forces 7.1 Velocity 7.2 Dot Product (Geometric) 7.3 Dot Product (Algebraic) 7.4	# of quest. done? You may be asked to
X	Date M 25	2-3 4-5 6-7 8-9	Topics Forces 7.1 Velocity 7.2 Dot Product (Geometric) 7.3 Dot Product (Algebraic) 7.4 Scalar and Vector Projections 7.5	# of quest. done? You may be asked to
X	Date M 25 T 26	2-3 4-5 6-7 8-9 10-11 12-14	ropics Forces 7.2 Dot Product (Algebraic) 7.4 Scalar and Vector Projections 7.5 Cross Product 7.6	# of quest. done? You may be asked to
X	Date M 25	2-3 4-5 6-7 8-9	ropics Forces Velocity 7.2 Dot Product (Geometric) 7.3 Dot Product (Algebraic) 7.4 Scalar and Vector Projections 7.5 Cross Product	# of quest. done? You may be asked to

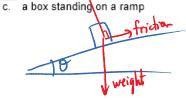

Force

When objects are at rest or move at a constant velocity in a straight line, then the forces that act upon the object cancel each other out. In other words, there is no NET force. The counteracting force is called the equilibrant force. Draw the resultant force and the corresponding equilibrant force for the following forces:

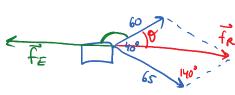
Collinear Forces at equilibrium

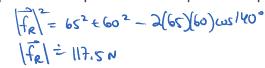
Coplanar Forces at equilibrium




Describe the forces that act on the object to keep it in a state of equilibrium.

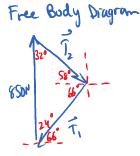
- aircraft flying at constant velocity b. an object hanging on two wires

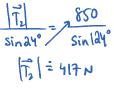


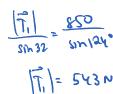


Jake and Maria are towing their friends on a toboggan. Jake is exerting a force of 65N and Maria a force of 60 N. Since they are walking side by side, the ropes pull to either side of the toboggan at 40° to each other.

- a. Find the resultant force pulling the toboggan forward from a stop. mag + dir.
 b. Soon the toboggan is travelling at a constant speed. Find the equilibrant force and explain what it represents.

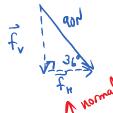





- (b) $\vec{f_e} = 117.5 \text{ N} \left[159^{\circ} \text{ off of 60N force} \right]$

TR = 117.5 N [21° off of 60 N force]

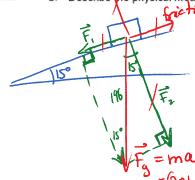
A large balloon is tethered to the top of a building by two wires attached at points 20m apart. If the buoyant force on the balloon is 850N, and the two wires make angles or 58° and 66° with the horizontal, find the tension in each of the


A lawn mower is pushed with a force of 90N directed along the handle, which makes an angle of 36° with the ground.

Determine the horizontal and vertical components of the force on the mower.

b. Describe the physical meaning of each component.

$$|\vec{t}_{N}| = 60 \cos 36^{\circ} = 13N$$

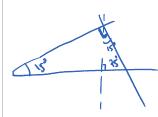

The accelerates the lawn mower harizontally (may be countracted by friction harizontally (may be countracted if go at constant speed)

for wasted force, countracted by the normal force of the ground.

6. A 20kg trunk is testing on a ramp inclined at an angle of 15°. wag nitwes

a. Calculate the components of the force of gravity on the trunk that are parallel and perpendicular to the ramp.

Describe the physical meaning of each component.


|Fi| = 196 sm/5° = 57 N

SOR CAH TOA

Sim 15° = |Fil

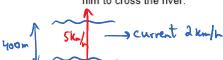
196

|F2| = 196 cos 15° = 189 N

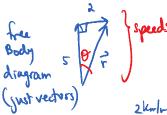
(b) Fi force is counteracted by frictional force

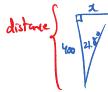
Fr is counteracted by the normal force (ramp pushes back on the box

3


Velocity

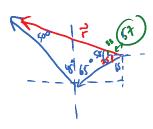
1. Josh can paddle at a speed of 5 km/h in still water. He wishes to cross a river 400m wide that has a current of 2km/h.




a. If he steers the canoe in a direction perpendicular to the current, determine the resultant velocity. Find the point on the opposite bank where the canoe touches.

If he wishes to travel straight across the river, determine the direction he must head and the time it will take

m to cross the river. $Q[\vec{r}] = \sqrt{5^2 + 2^2} \qquad \theta = \tan^{-1}\left(\frac{2}{5}\right)$ $= \sqrt{29} \sim 5.4 \text{ km/h} \qquad \theta = 21.8^{\circ} \text{ his direction}$ $\therefore \vec{r} = \sqrt{29} \text{ km/h} \left[21.8^{\circ} \text{ off of original direction}\right]$


distance \\
400 \\
160m = \pi \text{... Josh touches at 160m downstream from his starting pt. on the opposite side

$$SINO = \frac{2}{5}$$

$$O = 23.6^{\circ}$$

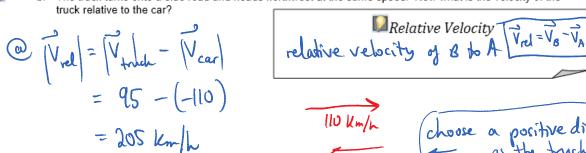
 $T = \frac{D}{V} = \frac{0.4 \text{ km}}{\sqrt{21}} \sim 0.087 \text{ hr}$ 2. An airplane heading northwest at 500km/h encounters a wind of 120km/h from 65° east of north. Determine the resultant ground velocity of the plane.

$$|\vec{r}|^2 = 500^2 + 120^2 - 2(500)(120)(6010^\circ)$$

NGE

$$\frac{Sin 110}{553} = \frac{Sin \Theta}{500}$$

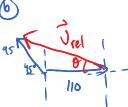
$$\boxed{\Theta = 58.2^{\circ}}$$


$$\frac{Sin 10}{553} = \frac{Sin 0}{500} \qquad \hat{r} = 553 \, \text{km/h} \left[\text{N56.8 w} \right]$$

$$\left[\text{W}^{33.2} \text{N} \right]$$

Vre = 95 [w] - 110[E] 5 | Unit 2 12CV Date: = qS[w] - -10[w] = 205[w]3. A car travelling east at 110km/h passes a truck going in the opposite direction at 95km/h.

a. What is the velocity of the truck relative to the car?


The truck turns onto a side road and heads northwest at the same speed. Now what is the velocity of the truck relative to the car?

110 km/h choose a positive direction

Since the vectors are collinear

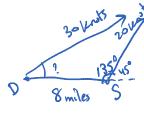
|Vtruck - Vcar | = |Vtruck | - |Vcar |

$$|\vec{v}_{rel}|^{2} = |\vec{v}_{truck} - \vec{v}_{cor}|^{2} = 95^{2} + 10^{2} - 2(95)(10)\cos 135^{\circ}$$

$$|\vec{v}_{rel}|^{2} = |\vec{v}_{truck} - \vec{v}_{cor}|^{2} = 95^{2} + 10^{2} - 2(95)(10)\cos 135^{\circ}$$

$$|\vec{v}_{rel}|^{2} = |89.5|(10)\cos 135^{\circ}$$

$$|\vec{v}_{rel}|^{2} = |89.5|(10)\cos 135^{\circ}$$


$$|\vec{v}_{rel}|^{2} = |89.5|(10)\cos 135^{\circ}$$

$$|\vec{v}_{rel}|^{2} = |89.5|(10)\cos 135^{\circ}$$

A destroyer detects a submarine analyzed miles due east travelling northeast at 20knots. If the destroyer has a top speed of 30 knots at what heading should it travel to intercept the submarine?

distance

Sind Isin 1350 is should travel in direction
$$0.28.1^{\circ}$$
 N61, 9°E

Dot Product (Geometric)

Dot Product with Geometric Vectors

u.v= |u||v|cster angle tetween
twis 0°≤0≤180°

1. Find the dot product of $\vec{u} \cdot \vec{v}$ for each of the following where θ is the angle between vectors.

a.
$$|\vec{u}| = 7, |\vec{v}| = 12, \theta = 60^{\circ}$$

a b.
$$|\vec{a}| = 20, |\vec{b}| = 3, \theta = \frac{5\pi}{6}$$

 For above question a. find v • u. What is property you can conclude from this?

6 ty yourself leave exact answer (-30/3)

- 2. v. v = (12/7) ws60° = 42 いいところ ie. dot product is commutative
- 3. a.a=(20)(20) cos 0° = angle hetween itself. 6.6=9 ie. a.a= |a|2
- 4. 2.0=(7/0) ws0=0 v.0=(2)(0) ωs0=0 € always 200 scalar #
- 6. (ab) · c + a · (c · b) = ie. Not AssociatiVE!

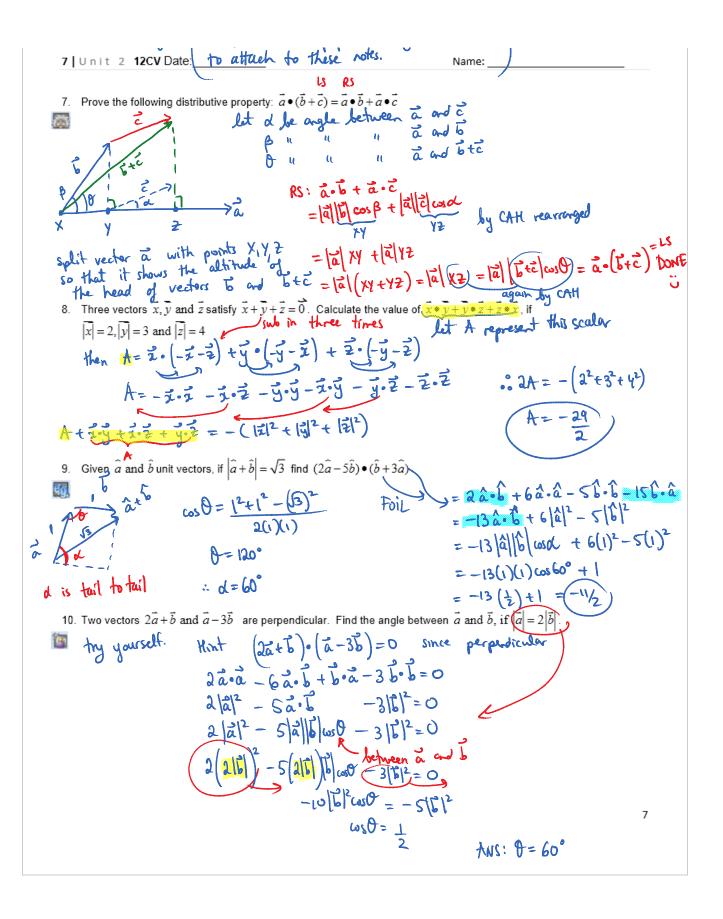
- 3. Find $\vec{a} \cdot \vec{a}$ and $\vec{b} \cdot \vec{b}$. What can conclude from this?
- Find u 0 and v 0. What can conclude from this?
- 5. Prove that two non-zero vectors \vec{u} and \vec{v} are perpendicular if and only if $u \cdot v = 0$ must prove both
- 6. Explain why $(\vec{a} \cdot \vec{b}) \cdot \vec{c} \neq \vec{a} \cdot (\vec{c} \cdot \vec{b})$
- 5. proof = assume u b v then 0=90° then u.v= |u||v|cos@0 =|11/10)

proof & u.v=0

then Italiaso =0 since it, i are non zero rectors

ie. I and i have an argle of 80° between.

Dot Product Properties


(4) $\vec{u} \cdot \vec{0} = 0$ (scalar)

(5) $\vec{u} \cdot (\vec{a} + \vec{b}) = \vec{u} \cdot \vec{a} + \vec{u} \cdot \vec{b}$

(6) $K(\vec{u} \cdot \vec{v}) = (k\vec{u} \cdot \vec{v} = \vec{u} \cdot (k\vec{v}))$

scalar to scalar # dot product with vector only regular multiplication.

Socry in MAY need extra paper - if you write big 7 | Unit 2 12CV Date: to attach to these rotes. Name:

Dot Product (Algebraic)

Dot Product with Algebraic Vectors

$$\vec{u} = (\mathbf{a}_1, \mathbf{b}_1, \mathbf{c}_1) \qquad \vec{v} = (\mathbf{a}_2, \mathbf{b}_2, \mathbf{c}_2)$$

$$\vec{u} \cdot \vec{v} = \mathbf{a}_1 \mathbf{a}_2 + \mathbf{b}_1 \mathbf{b}_2 + \mathbf{c}_1 \mathbf{c}_2$$

- Find $(3\vec{a} + \vec{b}) \cdot (2\vec{b} 4\vec{a})$, if $\vec{a} = -\hat{i} 3\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} 5\hat{k}$.
 - Find the angle between the following vectors $\vec{u} = (-3, 1, 2)$ and $\vec{v} = (5, -4, -1)$
- Given $\vec{a} = (2, 3, 7)$ and $\vec{b} = (-4, y, -14)$,
 - a. for what value of y are the vectors collinear?
 - b. for what value of y are the vectors perpendicular?

1. (3\(\alpha + \beta\) • (2\(\beta - 4\alpha\)) = (-1, -3, 1)
$$\Rightarrow$$
 3\(\alpha = (-3, -9, 3)\)

= (-1, -5, -2) • (8, 20, -14)

= (-1, 8) + -5(2\(\omega\) + -2(-14)

= -8 - (2\(\omega\) + -2(-14)

= -8 - (2\(\omega\) + -2(-14)

= -8 - (2\(\omega\) + -2(-14)

(2.) u.v= |u||v|cost

(-3,1,2) · (5,-4,-1) = \(32+12+22 \) \(52+42+12 \) \(\omega) -3(5)+1(-4)+2(-1) = 514 542 wso -21 = V588 WSO

36)
$$\vec{a}$$
 \vec{b} \vec{b} $\vec{a} \cdot \vec{b} = 0$

$$(2,3,7) \cdot (-4,4,-14) = 0$$

$$-8 + 3y - 98 = 0$$

$$3y = 106$$

150° = 0

(3.) a) y=-6 à colliner to b if a=kb (237) = K(-4, 11-14)

$$2 = -4k$$
 $-1 = k$
 2
 $3 = -\frac{1}{2}y$
 $-\frac{1}{6} = y$

8

- **4**. Find any vector \vec{w} that is perpendicular to both $\vec{u} = 3\hat{j} + 4\hat{k}$ and $\vec{v} = 2\hat{i}$.
- 5. The vectors $\vec{a} = 3\hat{i} - 4\hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} - 6\hat{k}$ are the diagonals of a parallelogram. Show that this parallelogram is a rhombus, and determine the lengths of the sides and the angles between the sides.
 - Find a unit vector that is parallel to the xy-plane and perpendicular to the

rhombus - sides are equal

- diagonals will meet at 90°

if a · b = 0 then it will be a rhomby c=0 since vector is parallel to ay plane.

 $(3,-4,-1) \cdot (2,3,-6) \stackrel{?}{=} 0$