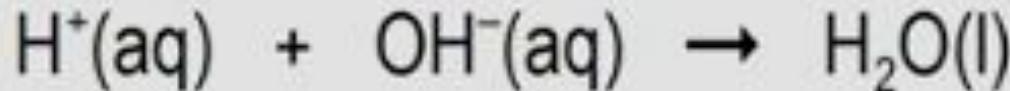


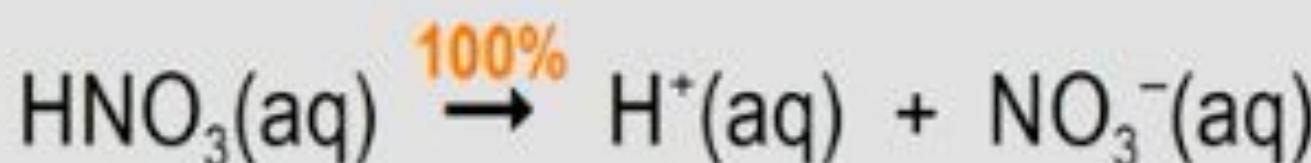
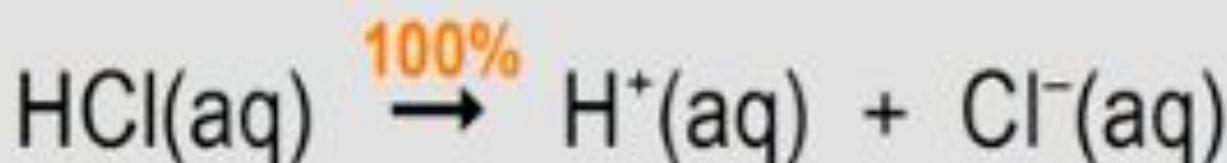
UNIT 4 - CHEMICAL SYSTEMS & EQUILIBRIUM

Lesson 8

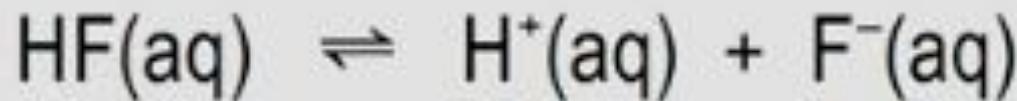

Acids & Bases

Learning Goals

- ❑ I will be able to contrast strong and weak acids and strong and weak bases using the concept of dynamic equilibrium, and compare the strengths of acids and bases based on their ionization constants.



Arrhenius Theory of Acids and Bases (1884)

- An **acid** releases **hydrogen ions** in aqueous solution.
e.g., $\text{HCl(g)} \rightarrow \text{H}^+(\text{aq}) + \text{Cl}^-(\text{aq})$
- A **base** releases **hydroxide ions** in aqueous solution.
e.g., $\text{NaOH(s)} \rightarrow \text{Na}^+(\text{aq}) + \text{OH}^-(\text{aq})$
- In an acid-base neutralization reaction, H^+ and OH^- combine to form water.


Strong acids completely ionize in water.

Examples

Weak acids partially ionize in water; equilibrium results.

Example

$$K_a = \frac{[\text{H}^+(\text{aq})][\text{F}^-(\text{aq})]}{[\text{HF(aq)}]}$$

acid ionization constant

higher $K_a \rightarrow$ stronger acid

Strong Acid or Weak Acid?

strong acids

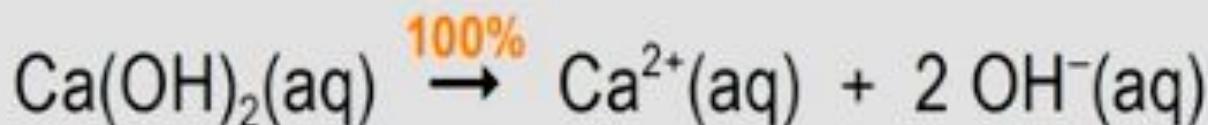
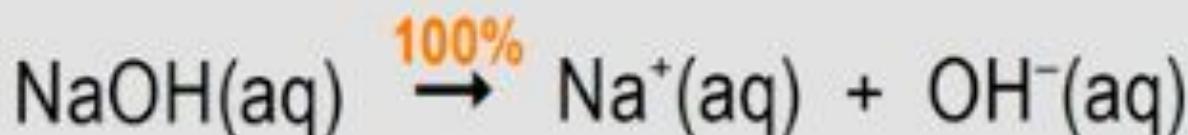
weak acids

IONIZATION CONSTANTS FOR ACIDS

Acid	Formula	K_a
perchloric acid	HClO_4	large
hydroiodic acid	HI	large
hydrobromic acid	HBr	large
hydrochloric acid	HCl	large
nitric acid	HNO_3	large
iron(III) ion	Fe^{3+}	1.5×10^{-3}
nitrous acid	HNO_2	7.2×10^{-4}
hydrofluoric acid	HF	6.6×10^{-4}
cyanic acid	HO CN	3.5×10^{-4}
methanoic acid	HCOOH	1.8×10^{-4}
chromium(III) ion	Cr^{3+}	1.0×10^{-4}
benzoic acid	$\text{C}_6\text{H}_5\text{COOH}$	6.3×10^{-5}
ethanoic acid	CH_3COOH	1.8×10^{-5}

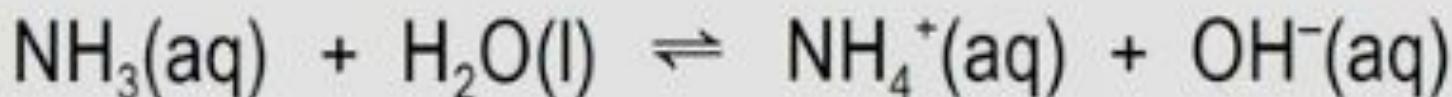
Hydronium Ions, H_3O^+

- In aqueous solutions, hydrogen ions combine with water molecules to form hydronium ions.

- For simplicity, chemist often use H^+ in place of H_3O^+ .

STRONG AND WEAK **BASES**


Strong bases are ionic hydroxides that completely dissociate in water.

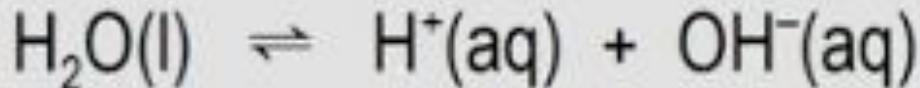
Examples

Weak bases react incompletely with water to produce hydroxide ions; equilibrium is reached.

Example

$$K_b = \frac{[\text{NH}_4^+(\text{aq})][\text{OH}^-(\text{aq})]}{[\text{NH}_3(\text{aq})]}$$

base ionization constant


higher $K_b \rightarrow$ stronger base

IONIZATION CONSTANTS FOR WEAK BASES

Base	Formula	K_b
dimethylamine	$(\text{CH}_3)_2\text{NH}$	9.6×10^{-4}
methylamine	CH_3NH_2	4.4×10^{-4}
ethylamine	$\text{C}_2\text{H}_5\text{NH}_2$	4.3×10^{-4}
trimethylamine	$(\text{CH}_3)_3\text{N}$	7.4×10^{-5}
ammonia	NH_3	1.8×10^{-5}
hydrazine	N_2H_4	9.6×10^{-7}
hydroxylamine	NH_2OH	6.6×10^{-9}
pyridine	$\text{C}_5\text{H}_5\text{N}$	1.5×10^{-9}
aniline	$\text{C}_6\text{H}_5\text{NH}_2$	4.1×10^{-10}

Autoionization of Water

- Water partially ionizes producing hydrogen ions and hydroxide ions.

$$K_w = [\text{H}^+(\text{aq})][\text{OH}^-(\text{aq})]$$

$$= 1.0 \times 10^{-14} \quad (\text{at } 25^\circ\text{C})$$

ionization constant for water

Success Criteria

- ❑ I can contrast strong and weak acids and strong and weak bases using the concept of dynamic equilibrium, and compare the strengths of acids and bases based on their ionization constants.