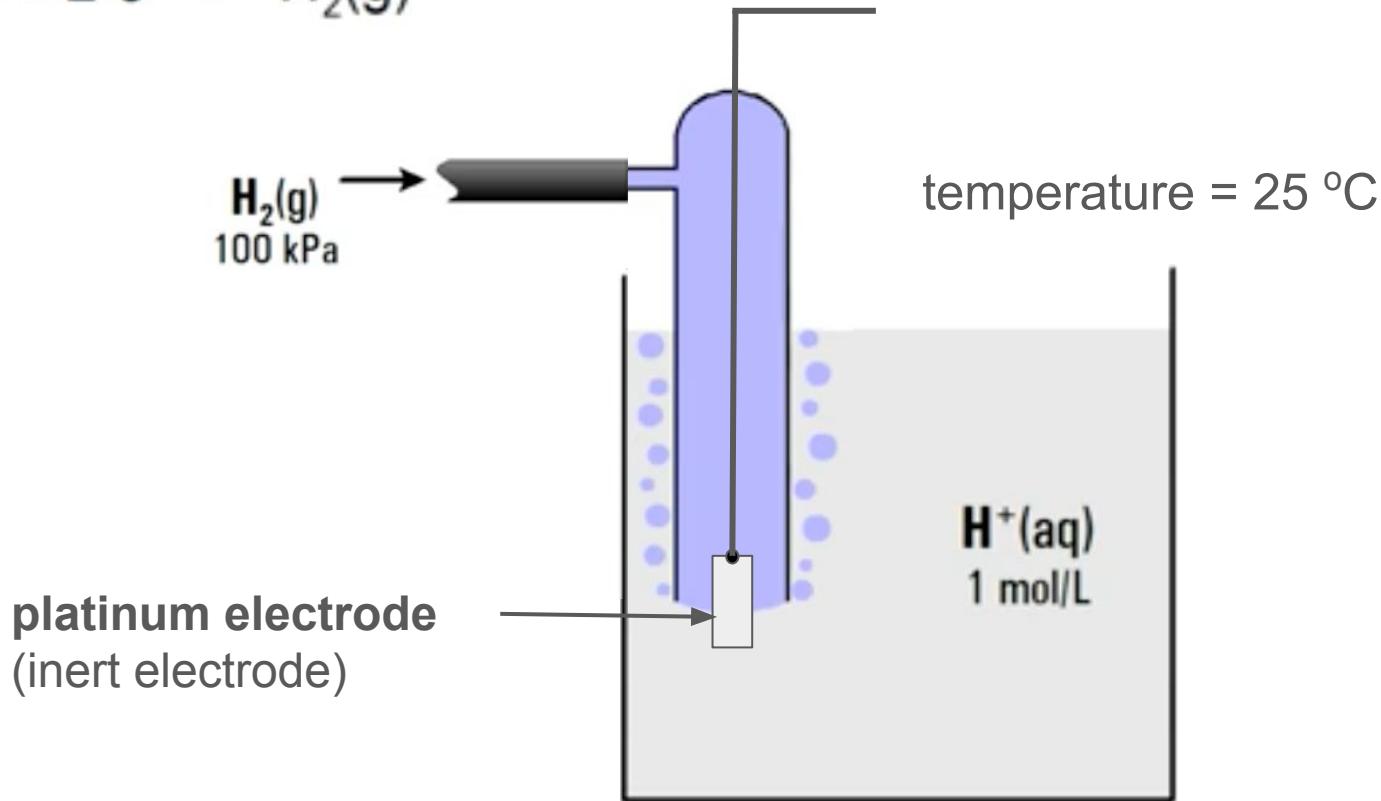
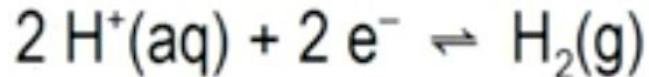


UNIT 5 - ELECTROCHEMISTRY

Lesson 8



Standard Hydrogen Half-Cell

Learning Goals

- I will be able to describe the standard hydrogen half-cell, and explain its use as a reference cell.

$\text{NO}_3^-(\text{aq}) + 2 \text{H}^+(\text{aq}) + \text{e}^- \rightleftharpoons \text{NO}_2(\text{g}) + \text{H}_2\text{O}(\text{l})$	+0.80
$\text{Fe}^{3+}(\text{aq}) + \text{e}^- \rightleftharpoons \text{Fe}^{2+}(\text{aq})$	+0.77
$\text{O}_2(\text{g}) + 2 \text{H}^+(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{H}_2\text{O}_2(\text{l})$	+0.70
$\text{MnO}_4^-(\text{aq}) + 2 \text{H}_2\text{O}(\text{l}) + 3 \text{e}^- \rightleftharpoons \text{MnO}_2(\text{s}) + 4 \text{OH}^-(\text{aq})$	+0.60
$\text{I}_2(\text{s}) + 2 \text{e}^- \rightleftharpoons 2 \text{I}^-(\text{aq})$	+0.54
$\text{Cu}^+(\text{aq}) + \text{e}^- \rightleftharpoons \text{Cu}(\text{s})$	+0.52
$\text{O}_2(\text{g}) + 2 \text{H}_2\text{O}(\text{l}) + 4 \text{e}^- \rightleftharpoons 4 \text{OH}^-(\text{aq})$	+0.40
$\text{Cu}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Cu}(\text{s})$	+0.34
$\text{SO}_4^{2-}(\text{aq}) + 4 \text{H}^+(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{H}_2\text{SO}_3(\text{aq}) + \text{H}_2\text{O}(\text{l})$	+0.17
$\text{Sn}^{4+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Sn}^{2+}(\text{aq})$	+0.15
$\text{Cu}^{2+}(\text{aq}) + \text{e}^- \rightleftharpoons \text{Cu}^+(\text{aq})$	+0.15
$2 \text{H}^+(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{H}_2(\text{g})$	0.00
$\text{Pb}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Pb}(\text{s})$	-0.13
$\text{Sn}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Sn}(\text{s})$	-0.14
$\text{Ni}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Ni}(\text{s})$	-0.26
$\text{Co}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Co}(\text{s})$	-0.28
$\text{PbSO}_4(\text{s}) + 2 \text{e}^- \rightleftharpoons \text{Pb}(\text{s}) + \text{SO}_4^{2-}(\text{aq})$	-0.36
$\text{Cd}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Cd}(\text{s})$	-0.40
$\text{Cr}^{3+}(\text{aq}) + \text{e}^- \rightleftharpoons \text{Cr}^{2+}(\text{aq})$	-0.41
$\text{Fe}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Fe}(\text{s})$	-0.44
$\text{Zn}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Zn}(\text{s})$	-0.76

Standard Hydrogen Half-Cell

$\text{NO}_3^-(\text{aq}) + 2 \text{H}^+(\text{aq}) + \text{e}^- \rightleftharpoons \text{NO}_2(\text{g}) + \text{H}_2\text{O}(\text{l})$	+0.80
$\text{Fe}^{3+}(\text{aq}) + \text{e}^- \rightleftharpoons \text{Fe}^{2+}(\text{aq})$	+0.77
$\text{O}_2(\text{g}) + 2 \text{H}^+(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{H}_2\text{O}_2(\text{l})$	+0.70
$\text{MnO}_4^-(\text{aq}) + 2 \text{H}_2\text{O}(\text{l}) + 3 \text{e}^- \rightleftharpoons \text{MnO}_2(\text{s}) + 4 \text{OH}^-(\text{aq})$	+0.60
$\text{I}_2(\text{s}) + 2 \text{e}^- \rightleftharpoons 2 \text{I}^-(\text{aq})$	+0.54
$\text{Cu}^+(\text{aq}) + \text{e}^- \rightleftharpoons \text{Cu}(\text{s})$	+0.52
$\text{O}_2(\text{g}) + 2 \text{H}_2\text{O}(\text{l}) + 4 \text{e}^- \rightleftharpoons 4 \text{OH}^-(\text{aq})$	+0.40
$\text{Cu}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Cu}(\text{s})$	+0.34
$\text{SO}_4^{2-}(\text{aq}) + 4 \text{H}^+(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{H}_2\text{SO}_3(\text{aq}) + \text{H}_2\text{O}(\text{l})$	+0.17
$\text{Sn}^{4+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Sn}^{2+}(\text{aq})$	+0.15
$\text{Cu}^{2+}(\text{aq}) + \text{e}^- \rightleftharpoons \text{Cu}^+(\text{aq})$	+0.15
$2 \text{H}^+(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{H}_2(\text{g})$	0.00
$\text{Pb}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Pb}(\text{s})$	-0.13
$\text{Sn}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Sn}(\text{s})$	-0.14
$\text{Ni}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Ni}(\text{s})$	-0.26
$\text{Co}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Co}(\text{s})$	-0.28
$\text{PbSO}_4(\text{s}) + 2 \text{e}^- \rightleftharpoons \text{Pb}(\text{s}) + \text{SO}_4^{2-}(\text{aq})$	-0.36
$\text{Cd}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Cd}(\text{s})$	-0.40
$\text{Cr}^{3+}(\text{aq}) + \text{e}^- \rightleftharpoons \text{Cr}^{2+}(\text{aq})$	-0.41
$\text{Fe}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Fe}(\text{s})$	-0.44
$\text{Zn}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Zn}(\text{s})$	-0.76

Standard Half-Cells

- contains all species involved in the half-reaction
- concentration of dissolved species is 1 mol/L
- pressure of gases is 100 kPa
- temperature is 25 °C

Inert Electrodes

- an unreactive conductor (e.g., carbon, platinum) is used as an electrode when a half-cell reaction does not involve a solid conductor

Success Criteria

- I can describe the standard hydrogen half-cell, and explain its use as a reference cell.

WORK:

- Read **section 10.2** in textbook.