

UNIT 5 - ELECTROCHEMISTRY

Lesson 9

Corrosion of Iron

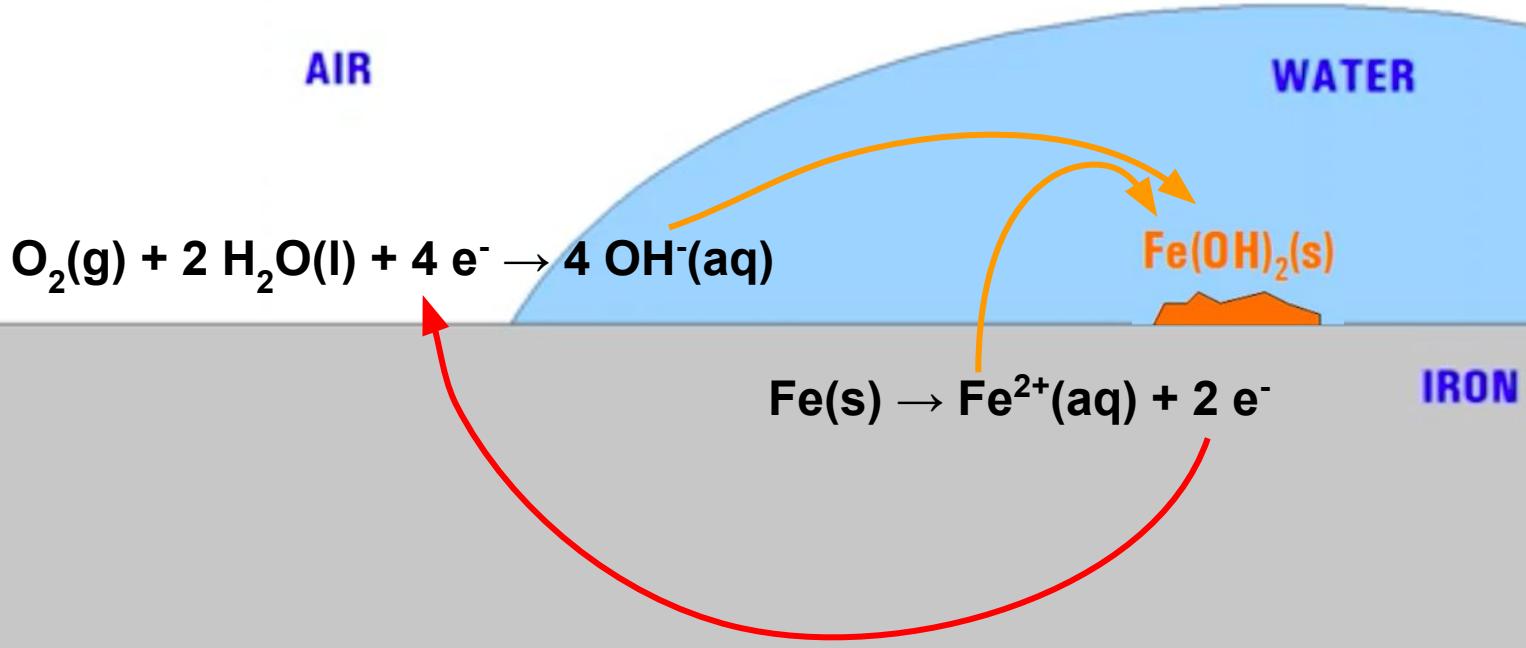
Learning Goals

- ❑ I will be able to explain the corrosion of iron in terms of an electrochemical process, and describe some corrosion-inhibiting techniques.

Corrosion of Iron

AIR

WATER


IRON

$I_2(s) + 2 e^- \rightleftharpoons 2 I^-(aq)$	+0.54
$Cu^+(aq) + e^- \rightleftharpoons Cu(s)$	+0.52
$O_2(g) + 2 H_2O(l) + 4 e^- \rightleftharpoons 4 OH^-(aq)$	+0.40
$Cu^{2+}(aq) + 2 e^- \rightleftharpoons Cu(s)$	+0.34
$SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^- \rightleftharpoons H_2SO_3(aq) + H_2O(l)$	+0.17
$Sn^{4+}(aq) + 2 e^- \rightleftharpoons Sn^{2+}(aq)$	+0.15
$Cu^{2+}(aq) + e^- \rightleftharpoons Cu^+(aq)$	+0.15
$2 H^+(aq) + 2 e^- \rightleftharpoons H_2(g)$	0.00
$Pb^{2+}(aq) + 2 e^- \rightleftharpoons Pb(s)$	-0.13
$Sn^{2+}(aq) + 2 e^- \rightleftharpoons Sn(s)$	-0.14
$Ni^{2+}(aq) + 2 e^- \rightleftharpoons Ni(s)$	-0.26
$Co^{2+}(aq) + 2 e^- \rightleftharpoons Co(s)$	-0.28
$PbSO_4(s) + 2 e^- \rightleftharpoons Pb(s) + SO_4^{2-}(aq)$	-0.36
$Cd^{2+}(aq) + 2 e^- \rightleftharpoons Cd(s)$	-0.40
$Cr^{3+}(aq) + e^- \rightleftharpoons Cr^{2+}(aq)$	-0.41
$Fe^{2+}(aq) + 2 e^- \rightleftharpoons Fe(s)$	-0.44
$Zn^{2+}(aq) + 2 e^- \rightleftharpoons Zn(s)$	-0.76
$2 H_2O(l) + 2 e^- \rightleftharpoons H_2(g) + 2 OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2 e^- \rightleftharpoons Cr(s)$	-0.91

SOA →

← SRA

Corrosion of Iron

Preventing the Corrosion of Iron

1. Protective Coating (paint, oil, etc)

- isolates the iron from the oxidizing agent (oxygen and water)

Preventing the Corrosion of Iron

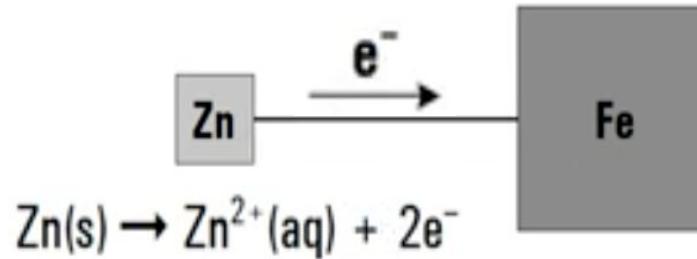
2. Cathodic Protection

- provides a replacement source of electrons for the iron

A. Sacrificial Anode

- attach a more reactive metal to the iron

$\text{PbSO}_4(\text{s}) + 2 \text{e}^- \rightleftharpoons \text{Pb}(\text{s}) + \text{SO}_4^{2-}(\text{aq})$	-0.36
$\text{Cd}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Cd}(\text{s})$	-0.40
$\text{Cr}^{3+}(\text{aq}) + \text{e}^- \rightleftharpoons \text{Cr}^{2+}(\text{aq})$	-0.41
$\text{Fe}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Fe}(\text{s})$	-0.44
$\text{Zn}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Zn}(\text{s})$	-0.76
$2 \text{H}_2\text{O}(\text{l}) + 2 \text{e}^- \rightleftharpoons \text{H}_2(\text{g}) + 2 \text{OH}^-(\text{aq})$	-0.83
$\text{Cr}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Cr}(\text{s})$	-0.91
$\text{SO}_4^{2-}(\text{aq}) + \text{H}_2\text{O}(\text{l}) + 2 \text{e}^- \rightleftharpoons \text{SO}_3^{2-}(\text{aq}) + 2 \text{OH}^-(\text{aq})$	-0.93
$\text{Al}^{3+}(\text{aq}) + 3 \text{e}^- \rightleftharpoons \text{Al}(\text{s})$	-1.66
$\text{Mg}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Mg}(\text{s})$	-2.37
$\text{Na}^+(\text{aq}) + \text{e}^- \rightleftharpoons \text{Na}(\text{s})$	-2.71
$\text{Ca}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Ca}(\text{s})$	-2.87
$\text{Ba}^{2+}(\text{aq}) + 2 \text{e}^- \rightleftharpoons \text{Ba}(\text{s})$	-2.91
$\text{K}^+(\text{aq}) + \text{e}^- \rightleftharpoons \text{K}(\text{s})$	-2.93
$\text{Li}^+(\text{aq}) + \text{e}^- \rightleftharpoons \text{Li}(\text{s})$	-3.04

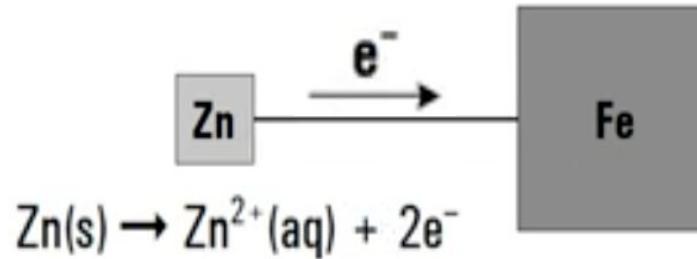

Preventing the Corrosion of Iron

2. Cathodic Protection

- provides a replacement source of electrons for the iron

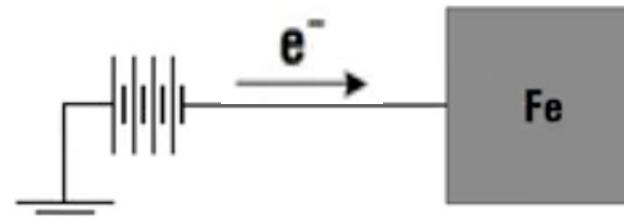
A. Sacrificial Anode

- attach a more reactive metal to the iron


Preventing the Corrosion of Iron

2. Cathodic Protection

- provides a replacement source of electrons for the iron


A. Sacrificial Anode

- attach a more reactive metal to the iron

B. Impressed Current

- attach the negative terminal of a current source to the iron

Preventing the Corrosion of Iron

3. Galvanization

- coating the iron with zinc
- zinc is a protective coating and a sacrificial anode

Success Criteria

- I can explain the corrosion of iron in terms of an electrochemical process, and describe some corrosion-inhibiting techniques.

WORK:

- Read **section 10.6** in textbook.
- Do questions **1 to 7** on page 662.
- Check your **answers** and **review** as necessary.