

Chapter 4: Factoring Algebraic Expressions:
Course: MPM2D – Principles of Mathematics

Creation Date: Friday, October 8th, 2021

Revised Date: Monday, February 12th, 2024

Classification of Polynomials:

You classify a polynomial by its number of terms and its degree.

Degree of the Polynomial: - is the greatest degree of any of its terms. The degree of a term is the sum of the exponents on its variables.

Example:

$2abc$ – is a monomial, because it has one term. It has 3 variables (a, b, c). Each variable has only an exponent of one. Exponent's sum is: $(a^1 + b^1 + c^1) = (1 + 1 + 1) = 3$. The sum of the exponents is of degree 3. This is called a **third-degree** polynomial.

$7x^2 + x$ – is a binomial, because it has two terms. The greatest power of this polynomial is 2 (which is x^2).

$7k^2m + 15k^3m^2 - 6km^2$ – is a trinomial, because it has 3 terms. The greatest exponent sum is for term $(15k^3m^2)$ – (3 for the power in k, 2 for the power in m) = $(3 + 2) = 5$. This is a **fifth-degree** polynomial.

Activity 8: Classification of Polynomials.

Question 1: Classify each polynomial in terms and degrees.

Polynomial	Number of Terms	Degree of Polynomial
$-3y$	1	first-degree
$5 + 6a^3$	2	third-degree
$6x^2 + x - 1$	3	second-degree
$8a^4b^4 - 6a^3b^2 + 2ab^2$	3	eight-degree
$5d^3e - 7e$	2	fourth-degree
$9 + 5y^5 - 4y^2 + y$	4	fifth-degree
$8a^3b^2 + 9a^2b - 6a^4b^2$	3	Sixth-degree
$10x^7y^2 - 3x^3y^3 + 5x^4y^4$	3	ninth-degree
$6abc - 5a^2bc^2 - 7abc^2$	3	fifth-degree

Question 2: Add and Subtract Polynomials:

To add, remove the brackets and then collect like terms.

To subtract, add the opposite polynomial.

Polynomial	Answer
$ \begin{aligned} & (2x^2 + 3x - 5) + (7x^2 + 6x - 2) \\ &= 2x^2 + 3x - 5 + 7x^2 + 6x - 2 \\ &= 2x^2 + 7x^2 + 3x + 6x - 2 \\ &= 9x^2 + 9x - 7. \end{aligned} $	$9x^2 + 9x - 7.$
$ \begin{aligned} & (4a^2 + 5ab - 9b^2) - (7a^2 - 6ab + 2b^2) \\ &= 4a^2 + 5ab - 9b^2 - 7a^2 + 6ab - 2b^2 \\ &= 4a^2 - 7a^2 + 5ab + 6ab - 2b^2 \\ &= -3a^2 + 11ab - 11b^2 \end{aligned} $	$-3a^2 + 11ab - 11b^2$
Simply the following:	
$ \begin{aligned} & (5x + 7) + (2x - 11) \\ &= 5x + 2x + 7 - 11 \\ &= 7x - 4 \end{aligned} $	$7x - 4$
$(3b - 8) - (6b - 7)$	
$=$	
$(5x^2 + 6x + 8) + (2x^2 + 5x - 9)$	
$(9y^3 - 7y^2 + 6) - (3y^3 - 5y^2 + 8)$	
$(7a^2 + 3a - 4) + (8a^2 - 2a - 15)$	
$(2c^2 - 3c + 1) - (-c^2 - 3c - 5)$	
$(7x^2 + 3xy - 2y^2) + (8x^2 - xy - y^2)$	
$(4g^2 + gh - 7h^2) - (g^2 - 2gh + 3h^2)$	
$(5ab^2 + 7a - b) + (3ab^2 - 5a + 6b)$	
$(3cd^2 + 2c + 9d) - (2cd^2 + 2c - d)$	
$(2x + 8) - (6x - 7) + (5x - 1)$	
$(5a^2 - b) + (6b - 2a^2) - (b^2 + 7a^2)$	

Review: Product of a Monomial and Polynomial using Distributive Property:

<u>Distributive Property</u>
$\begin{aligned} 2(x + 3) \\ = 2(x) + 2(3) \\ = 2x + 6 \end{aligned}$
$\begin{aligned} -a(3a + 5) \\ = -a(3a) + (-a)(5) \\ = -3a^2 - 5a \end{aligned}$
$\begin{aligned} 2x(x + 1) \\ = 2x(x) + 2x(1) \\ = 2x^2 + 2x \end{aligned}$
$\begin{aligned} 3(x + 2) \\ = 3(x) + 3(2) \\ = 3x + 6 \end{aligned}$
$\begin{aligned} 4(x + 2) \\ = 4(x) + 2(4) \\ = 4x + 8 \end{aligned}$
$\begin{aligned} x(x + 3) \\ = x(x) + 3x \\ = x^2 + 3x \end{aligned}$
$\begin{aligned} 4x(x + 4) \\ = 4x(x) + 4(4) \\ = 4x^2 + 16x \end{aligned}$

Multiply these polynomials	Answer
$(x + 1)(x + 2)$	$x^2 + 3x + 2$
$(x + 2)(x + 4)$	
$(x + 3)(2x + 1)$	
$(2x + 3)(x + 1)$	
$(x + 3)(x + 8)$	
$(2x + 5)(x + 4)$	
$(4x + 7)(3x + 1)$	
$(x + 2)(x + 5)$	
$(x - 2)(x + 4)$	
$(3x + 7)(x - 5)$	
Expand and simplify	
$-2(4x - 5)(7x - 6)$	
$2(x + 7)(x - 3) - (4x + 3)(2x - 1)$	
Use distributive Property to find the binomial product	
$(k - 3)(k - 5)$	
$(y - 3)(y - 4)$	
$(x - 2)(x - 4)$	
$(q - 4)(q - 2)$	
$(j - 7)(j - 1)$	
$(p - 9)(p - 3)$	
$(z - 7x)(z - 8x)$	
$(b - 3c)(b - 11c)$	

Factoring: Determine the Greatest Common Factor (GCF)

12	1, 12, 6, 2, 3, 4	1, 2, 3, 4, 6 , 12,
18	1, 18, 2, 9, 3, 6	1, 2, 3, 6 , 18
Greatest Common Factor is: 6 for (12, 18)		
10		
24		
Greatest Common Factor is:		
16		
32		
Greatest Common Factor is:		
8		
14		
Greatest Common Factor is:		
28		
40		
Greatest Common Factor is:		
Find the Greatest Common Factors for:		
6 and 9		
25 and 15		
24 and 16		
20 and 28		
36 and 15		
32 and 40		

Date: Friday, February 9th, 2024

Topic: Factors of Polynomials:

Special Products: Expand and Simplify

	Expanded	Simplified
$(x + 2)^2$	$(x + 2)(x + 2) = x^2 + 2x + 2x + 2^2$	$x^2 + 4x + 4$
$(x - 6)^2$	$(x - 6)(x - 6) = x^2 - 6x - 6x + 6^2$	$x^2 - 12x + 36$
$(x - 4)^2$	$(x - 4)(x - 4) = x^2 - 4x - 4x + 4^2$	$x^2 - 8x + 16$
$(2x + 5)^2$	$(2x + 5)(2x + 5) = 4x^2 + 10x + 10x + 5^2$	$4x^2 + 20x + 25$
$(3x - 1)^2$	$(3x - 1)(3x - 1) = 9x^2 - 3x - 3x + 1^2$	$9x^2 - 6x + 1$
$(2x - 5y)^2$	$(2x - 5y)(2x - 5y) = 4x^2 - 10xy - 10yx + (-5y)^2$ $= 4x^2 - 10xy - 10yx + 25y^2$ $= 4x^2 - 20xy + 25y^2$	$4x^2 - 20xy + 25y^2$

Activity 9: Expand and Simplify

	Expanded	Simplified
$(x + 3)^2$		
$(x + 2)^2$		
$(x - 6)^2$		
$(x - 4)^2$		
$(2x + 5)^2$		
$(3x - 1)^2$		
$(2x - 5y)^2$		
$(4x - y)^2$		
$(a + b)^2$		
$(a - b)^2$		
$(3a + 2)^2$		
$(5m - 3)^2$		
$(4 + 2b)^2$		
$(7 - 3z)^2$		
$(2x + 3y)^2$		

Topic 2: Product of a Sum and a Difference of Two Terms:

Example: Expand and Simplify

	Expanded	Simplified
$(x + 3)(x - 3)$	$x^2 - 3x + 3x - 9$	$x^2 - 9$
$(2y + 5)(2y - 5)$	$4y^2 - 10y + 10y - 25$	$4y^2 - 25$
$(x - 4)(x + 4)$	$x^2 + 4x - 4x - 16$	$x^2 - 16$
$(3k - 7)(3k + 7)$	$9k^2 + 21k - 21k - 49$	$9k^2 - 49$

In general:

$$\begin{aligned}
 & (a + b)(a - b) \\
 &= a^2 - ab + ba - b^2 \\
 &= a^2 - b^2
 \end{aligned}$$

This is referred to difference of squares.

$$a^2 - b^2 = (a + b)(a - b)$$

Factor These terms below:

Difference of Squares	Factor the squares	Proof Expand the terms.
$x^2 - 4$	$x^2 - 2^2 = (x + 2)(x - 2)$	$x^2 + 2x - 2x - 4 = x^2 - 4$
$x^2 - 9$		
$4x^2 - 1$	$(2x)^2 - 1^2 = (2x + 1)(2x - 1)$	
$9x^2 - 16$		
$4x^2 - 9y^2$		
$9m^2 - 4n^2$		

Topic 3: Perfect Square trinomials (3 terms)

Example: Expand and Simplify

	Expanded	Simplified
$(x + 3)^2$	$(x + 3)(x + 3)$ $= x^2 + 3x + 3x + 9$ $= x^2 + 6x + 9$	
$(x + 2)^2$	$(x + 2)(x + 2)$ $= x^2 + 2x + 2x + 4$ $= x^2 + 4x + 4$	
$(x + 4)$		
Generic Form $(a + b)^2$	$(a + b)(a + b)$ $= a^2 + ab + ba + b^2$ $= a^2 + 2ab + b^2$	$= a^2 + (2)ab + b^2$ $= a^2 + 2ab + b^2$
$(x - 6)^2$	$(x - 6)(x - 6)$ $= x^2 - 6x - 6x + 36$ $= x^2 - (2)(6x) + 36$ $= x^2 - 12x + 36$	
$(2x - 4)^2$	$(2x - 4)(2x - 4)$ $= 4x^2 - 8x - 8x + 16$ $= 4x^2 - 16x + 16$ <p>Quickly:</p> $= (2x)^2 - (2)(2x)(4) + (-4)(-4)$ $= 4x^2 - 16x + 16$	
Generic Form $(a - b)^2$	$(a - b)(a - b)$ $= a^2 - ab - ba + b^2$ $= a^2 - 2ab + b^2$	$= a^2 - (2)ab + b^2$ $= a^2 - 2ab + b^2$
In general: Perfect Squares (Trinomials)		
$(a + b)^2$ $= a^2 + 2ab + b^2$		
$(a - b)^2$ $= a^2 - 2ab + b^2$		

Topic 4: Factoring Quadratic Expression in form of $x^2 + bx + c$, $a = 1$

Quadratic questions: (3 forms)

1. $y = a(x - h)^2 + k$
2. $y = a(x - r)(x - s)$
3. $y = ax^2 + bx + c$ ← studying now, where $a = 1$

	Expanded	Equate												
General Form: $y = ax^2 + bx + c$, $a = 1$ $y = x^2 + bx + c$														
$y = a(x + r)(x + s)$, $a = 1$ $y = (x + r)(x + s)$	$= x^2 + rx + sx + rs$ $= x^2 + (r + s)x + rs$	$x^2 + bx + c = x^2 + (r + s)x + rs$ $b = (r + s)$ $c = (r \times s)$												
In general: Transition for the form 2 to 3 above. $x^2 + bx + c = x^2 + (r + s)x + rs$														
$b = (r + s)$ $c = (r \times s)$														
Examples of factor r, s , where r, s are only integers.														
<u>Factor, if possible</u>														
$x^2 + 7x + 12$	$b = 7$, $c = 12$	<table border="1"> <thead> <tr> <th>Factors (r, s)</th><th>Product c $c = r \times s$</th><th>Sum $b = r+s$</th></tr> </thead> <tbody> <tr> <td>1, 12</td><td>12</td><td>13</td></tr> <tr> <td>2, 6</td><td>12</td><td>8</td></tr> <tr> <td>3, 4</td><td>12</td><td>7</td></tr> </tbody> </table> $ \begin{aligned} & (x + r)(x + s) \\ & = (x + 3)(x + 4) \\ & = x^2 + 4x + 3x + 12 \\ & = x^2 + 7x + 12 \end{aligned} $	Factors (r, s)	Product c $c = r \times s$	Sum $b = r+s$	1, 12	12	13	2, 6	12	8	3, 4	12	7
Factors (r, s)	Product c $c = r \times s$	Sum $b = r+s$												
1, 12	12	13												
2, 6	12	8												
3, 4	12	7												
$x^2 + 4x + 6$														
$x^2 - 29x + 28$														
$x^2 + 3x - 28$														

$x^2 - 4x - 21$	$b = -4, c = -21$ $r, s = (3, -7)$ $b = (r + s)$ $= (x + 3)(x - 7)$ $= (x - 7)(x + 3)$ Proof: $= x^2 - 7x + 3x - 21$ $= x^2 - 4x - 21$	Factors (r, s)	Product (c) $c = r \times s$	Sum (b) $b = r+s$
		-1, 21	-21	20
		-3, 7	-21	4
		1, -21	-21	20
		3, -7	-21	-4

Date: Monday, February 12th, 2024

Goal:

Topic 5: Factoring Quadratic Expression in form of $ax^2 + bx + c$, $a \neq 1$, but a, b, c are integers

Example:

Example	Factors: Products and sums			
General form: $ax^2 + bx + c$ $3x^2 + 8x + 4$ $a = 3$, $b = 8$, $c = 4$ need to find two integers whose product is $a \times c = 12$, whose sum of two factors is 8	Factors of $(a \times c)$, factors of 12	Product	Sum (b)	$= 3x^2 + 8x + 4$ $= 3x^2 + 6x + 2x + 4$ $= 3x(x + 2) + 2(x + 2)$ $= (x + 2)(3x + 2)$ $= (3x + 2)(x + 2)$ Expand to prove: $= (3x + 2)(x + 2)$ $= 3x^2 + 6x + 2x + 4$ $= 3x^2 + 8x + 4$
$6x^2 - 5x + 1$ $a = 6$ $b = -5$ $c = 1$	Factors ($a \times c$) = 6	Product	Sum	$= 6x^2 - 5x + 1$ $= 6x^2 - 2x - 3x + 1$ $= 2x(3x - 1) - (3x - 1)$ $= (3x - 1)(2x - 1)$ Expand to prove: $= (3x - 1)(2x - 1)$ $= 6x^2 - 3x - 2x + 1$ $= 6x^2 - 5x + 1$
$16x^2 + 26x - 12$ Remove common factor first (GCF) = 2 $= 2(8x^2 + 13x - 6)$ $a = 8$ $b = 13$ $c = -6$ $a \times c = 8 \times (-6) = -48$	Factors ($a \times c$) = -48	Product	Sum $b = 13$	$= 2(8x^2 + 13x - 6)$ $= 2[8x^2 + 16x - 3x - 6]$ $= 2[8x^2 - 3x + 16x - 6]$ $= 2[x(8x - 3) + 2(8x - 3)]$ $= 2[(8x - 3)(x + 2)]$ Expand to prove: $= 2[(8x - 3)(x + 2)]$ $= 2[8x^2 + 16x - 3x - 6]$ $= 2[8x^2 + 13x - 6]$

Activity 10: Factor these parabolic equations (if possible)

$2x^2 + 5x + 3$		
$3x^2 + 7x + 4$		
$6x^2 + 5x + 1$		
$6x^2 + 11x + 1$		
$2x^2 + 7x + 5$		
$6y^2 + 19y + 8$		
$12q^2 + 17q + 6$		

Summary/Key Concepts:

1. Always look for a common factor first when factoring a trinomial
2. To factor $ax^2 + bx + c$, find two integers whose product is $a \times c$, and whose sum is b . Then break up the middle term and factor by grouping.
3. Note: Not all quadratic expressions of the form $y = ax^2 + bx + c$, can be factored over the integers.

Grand Summary of all parabolic forms.

Quadratic Expression	$x^2 + bx + c$	$a^2 - b^2$	$a^2 + 2ab + b^2$ $a^2 - 2ab + b^2$	$ax^2 + bx + c$
Factoring Technique	<p>Find two integers, r and s, with a product of c and a sum of b.</p> <p>Then write: $x^2 + bx + c$ as $(x + r)(x + s)$</p>	<p>Use the difference of squares pattern.</p> $a^2 - b^2 = (a - b)(a + b)$	<p>Use a perfect square trinomial pattern.</p> $a^2 + 2ab + b^2 = (a + b)^2$ $a^2 - 2ab + b^2 = (a - b)^2$	<p>Find two integers with a product of a x c, and a sum of b.</p> <p>Then break up the middle term and factor by grouping</p>
Example;	<p>$x^2 + 11x + 18$ $b = 11, c = 18,$ The two integers are: 9 and 2. $x^2 + 11x + 18 = (x + 9)(x + 2)$</p>	$100x^2 - 9 = (10x)^2 - (3)^2 = (10x - 3)(10x + 3)$	$x^2 + 6x + 9 = x^2 + (2)(3)x + 9 = (x + 3)^2$ $25x^2 - 40x + 16 = (5x)^2 - 2(5x)(4) + 4^2 = (5x - 4)^2$	$6x^2 - 11x - 7$ $a = 6, c = -7$ $a \times c = -42,$ $b = -11$ <p>The two integers are: 3, -14 $= 6x^2 - 11x - 7$ $= 6x^2 + 3x - 14x - 7$ $= 3x(2x + 1) - 7(2x + 1)$ $= (2x + 1)(3x - 7)$</p>