

Chapter 6: Quadratic Equations:

Date Created: Friday, October 15, 2021

Date Revised: Friday, February 16, 2024

Three forms of Quadratic Relations:

1. $y = ax^2 + bx + c$ ↵ standard form
2. $y = a(x - h)^2 + k$ ↵ Vertex Form
3. $y = a(x - r)(x - s)$ ↵ x-intercept form or zero form.

Topic: 1: Determine the Minima and Maxima of a quadratic relation in the form of $y = ax^2 + bx + c$

Also called: Completing of Squares, $(x - h)^2$

Example 1: Convert $y = ax^2 + bx + c$ into $y = a(x - h)^2 + k$

$$y = x^2 + 8x + 5$$

Step 1: factor the x out from the first two terms: $x^2 + 8x$

$$y = x^2 + 8x + 5$$

$$y = x(x + 8) + 5$$

what is $(x + 8)^2 = (x + 8)(x + 8) = x^2 + 8x + 8x + 64$ ↵ $(x + 8)^2$ is too big

What if $(x + 8/2)^2 = (x + 4)^2 = (x + 4)(x + 4) = x^2 + 4x + 4x + 16 = x^2 + 8x + 16$

To keep it balanced from the original equation we need to take away 16.

$$= (x^2 + 8x)$$

$$= (x + 4)^2 - 16$$

expand

$= (x + 4)^2 - 16$ ↵ brings us closer to completing the square and balancing the equation.

$$= (x + 4)(x + 4) - 16$$

$$= x^2 + 8x + 16 - 16$$

$$= x^2 + 8x$$

$$= x(x + 8)$$

$$y = x^2 + 8x + 5$$

$$y = x^2 + 8x + 5$$

$$y = x^2 + 8x + 4^2 - 4^2 + 5$$

$$y = (x^2 + 8x + 4^2) + 5 - 4^2$$

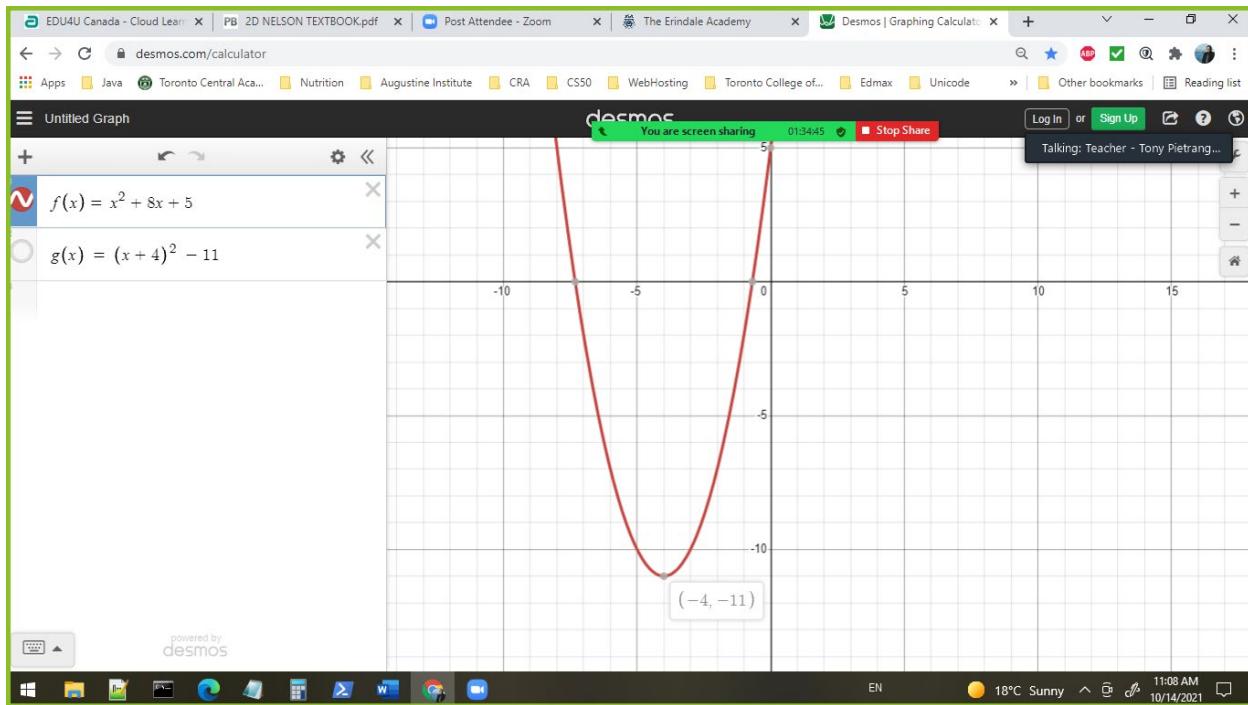
$$y = (x + 4)^2 + 5 - 16$$

$$y = (x + 4)^2 - 11 \quad \leftarrow \text{vertex } (x, y) = (h, k) = (-4, -11)$$

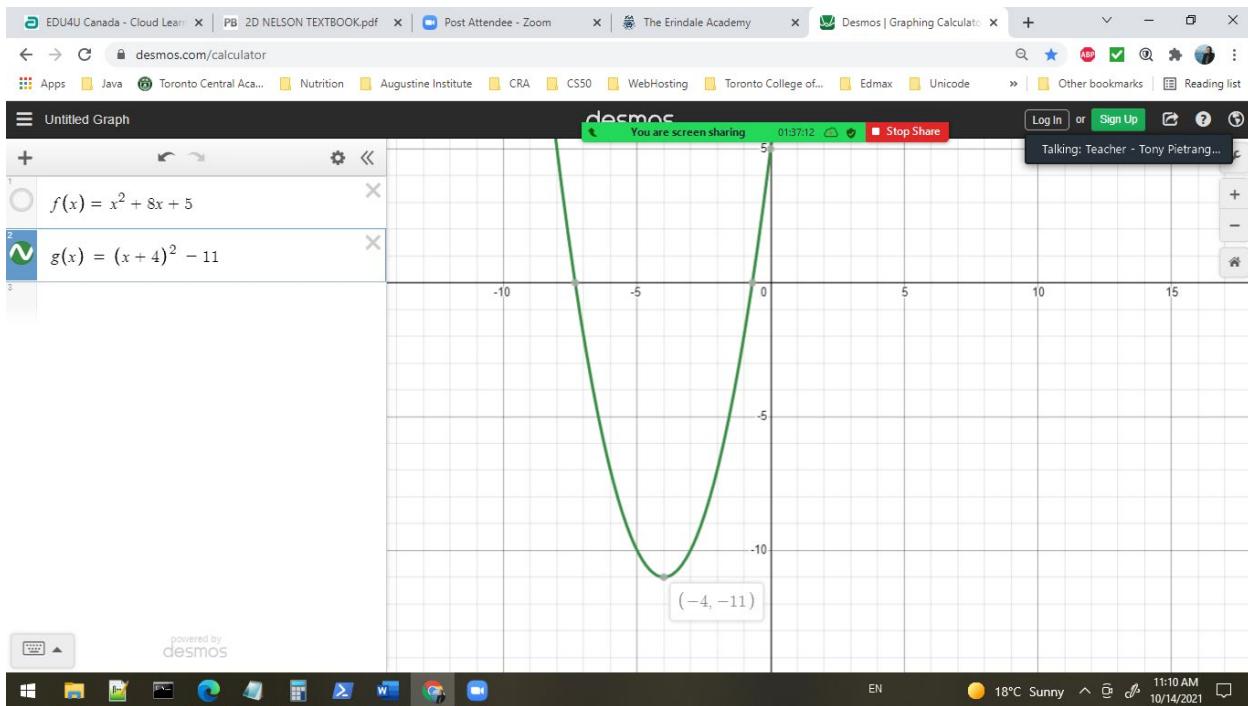
$$y = (x - h)^2 - 11 \quad \leftarrow h \text{ is } -4 \text{ to make it } (x + 4)^2$$

Desmos Graphing Software to plot both equations.

$$y = x^2 + 8x + 5$$



$$y = (x + 4)^2 - 11 \leftarrow \text{vertex is at } (x, y) = (-4, -11)$$



Note: Both equations form the same graph.

Example 2: Finding the Minimum and Maximum, where $a \neq 1$

$$y = 2x^2 + 12x + 11 \rightarrow y = a(x - h)^2 + k$$

Step 1: Factor the coefficient from first 2 terms.

$$y = 2(x^2 + 6x) + 11$$

Step 2: Complete the square of the term inside the brackets.

$$\begin{aligned} &= x^2 + 6x \\ &= x^2 + 6x + (6/2)^2 - (6/2)^2 \\ &= x^2 + 6x + (3)^2 - (3)^2 \\ &= (x^2 + 6x + 9) - 9 \quad \leftarrow x^2 + 6x + 9 = (x + 3)^2 \\ &= (x + 3)^2 - 9 \quad \leftarrow \text{substitute into the original equation} \end{aligned}$$

$$y = 2(x^2 + 6x) + 11$$

$$y = 2[(x + 3)^2 - 9] + 11$$

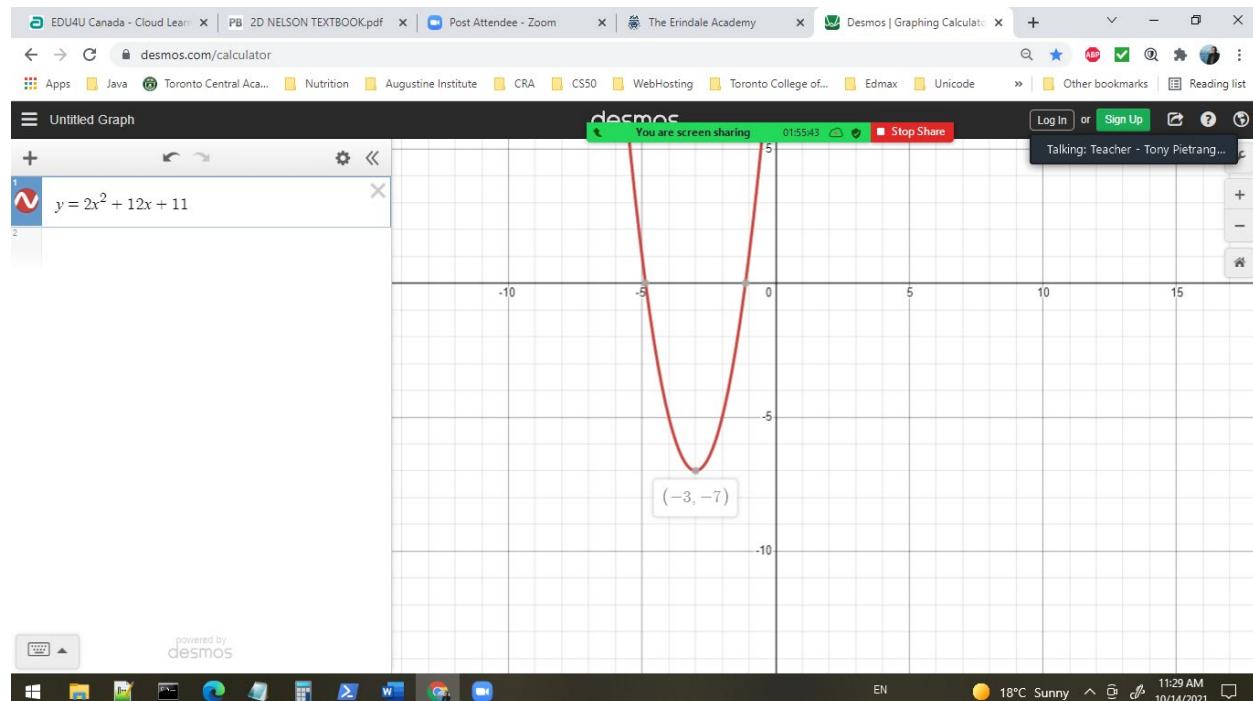
$$y = 2[(x + 3)^2] + 11 + (-9)(2)$$

$$y = 2(x + 3)^2 + 11 - 18$$

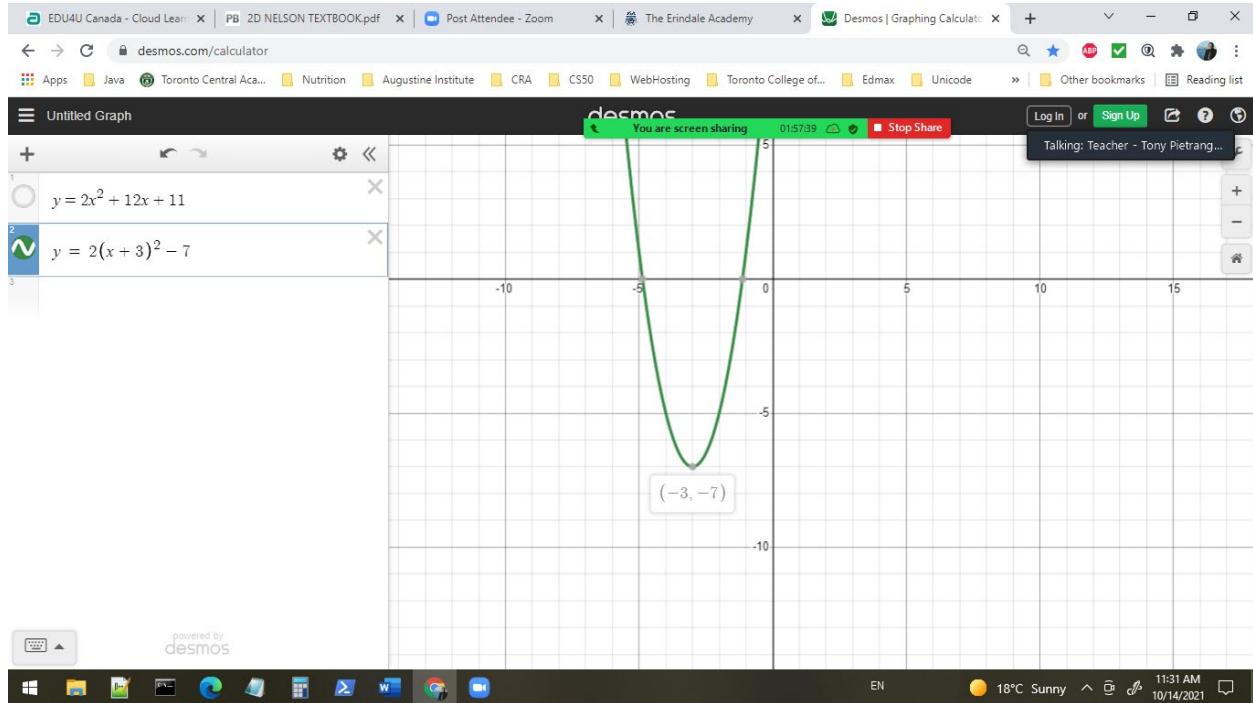
$$y = 2(x + 3)^2 - 7 \quad \leftarrow \text{vertex } (x, y) = (h, k) = (-3, -7)$$

Plot using Desmos Graphing software.

$$y = 2x^2 + 12x + 11$$

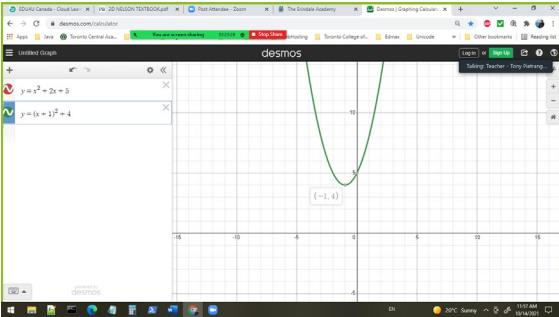


$$y = 2(x + 3)^2 - 7$$



Activity 11: Completing the Squares, or Transforming Quadratic equation:

$y = ax^2 + bx + c$ into vertex form $y = a(x - h)^2 + k$

Standard form $y = ax^2 + bx + c$	Vertex Form $y = a(x - h)^2 + k$
Question 1: Rewrite equations into the vertex form.	
$y = x^2 + 2x + 5$ Observation: $a = 1$ $y = x^2 + 2x + 5$ $y = x^2 + 2x + 1^2 - 1^2 + 5$ $y = (x^2 + 2x + 1^2) - 1^2 + 5$ $y = (x + 1)^2 + 5 - 1$ $y = (x + 1)^2 + 4$	$y = (x + 1)^2 + 4$ $\text{vertex}(x, y) = (h, k) = (-1, 4)$ 
$y = x^2 + 4x + 7$	
$y = x^2 + 6x + 3$	
Question 2: Determine the value of c, to complete the square.	
$y = x^2 + 6x + c$	
$y = x^2 + 14x + c$	
$y = x^2 - 12x + c$	
$y = x^2 - 10x + c$	
$y = x^2 + 2x + c$	
$y = x^2 - 80x + c$	
Question 3: Rewrite the equations in the form of: $y = a(x - h)^2 + k$	
$y = x^2 + 6x - 1$	
$y = x^2 + 2x + 7$	
$y = x^2 + 10x + 20$	
$y = x^2 + 2x - 1$	

Course: MPM2D – Principles of Mathematics.

Date Created: Friday, October 15, 2021

Modified Date: Friday, February 16th, 2024

Goal/Topic: The Quadratic Formula:

Definition: Roots of an equation.

1. The value(s) of the variables that makes an equation true

Example:

$$y = x^2 - x - 12$$

set $y = 0$

$0 = (x - 4)(x + 3)$ ↵ these are the zeros of the equation.

↵ They are also the roots of the equation.

→ Below are the values that make the equation true.

<u>$x - 4 = 0$</u>	<u>$x + 3 = 0$</u>
<u>$X = 4$</u>	<u>$X = -3$</u>

History:

Quadratic equations that can be factored are simple to solve.

But, what about quadratics that **can not** be factored.

The Greek mathematicians: - had methods to solve quadratics.

Euclid (300 BCE, same as BC)

Pythagoras (500 BCE, same as BC)

Hindu: Mathematicians:

Brahmagupta (700 AD, same as ACE)

Bhaskara (1100 AD, same as ACE)

Helped to develop the Quadratic Formula below:

The roots or zeros	Line of Symmetry
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$x = \frac{-b}{2a}$

Example: Reason you see: $\pm\sqrt{b^2 - 4ac}$

$$a^2 = (-a)(-a)$$

$$a^2 = (a)(a)$$

$$16 = (-4)(-4)$$

$$16 = (4)(4)$$

Reason you see, \pm in front of factor above.

Let's us do a walk through to understand and develop the formula.

page 293: McGraw-Hill Ryerson

Example:	Quadratic Formula
$2x^2 + 5x + 1 = 0$	$ax^2 + bx + c = 0$
$x^2 + \frac{5}{2}x + \frac{1}{2} = 0 \leftarrow$ formula divide by 2	$x^2 + \frac{b}{a}x + \frac{c}{a} = 0 \leftarrow$ divide formula by a
$x^2 + \frac{5}{2}x + \left(\frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2 + \frac{1}{2} = 0 \leftarrow$ complete the square	$x^2 + \frac{b}{2a}x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \leftarrow$ complete the sq.
$(x^2 + \frac{5}{2}x + \left(\frac{5}{4}\right)^2) - \left(\frac{5}{4}\right)^2 + \frac{1}{2} = 0$	$(x^2 + \frac{b}{2a}x + \left(\frac{b}{2a}\right)^2) - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0$
$(x + \frac{5}{4})^2 - \left(\frac{5}{4}\right)^2 + \frac{1}{2} = 0 \leftarrow$ using $(a + b)^2$	$(x + \frac{b}{2a})^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0$
$(x + \frac{5}{4})^2 - \left(\frac{25}{16}\right) + \frac{8}{16} = 0 \leftarrow$ add like terms	$(x + \frac{b}{2a})^2 - \frac{b^2}{4a^2} + \frac{c}{a} = 0$
$(x + \frac{5}{4})^2 - \frac{17}{16} = 0 \leftarrow$ simplified	$(x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2} = 0 \leftarrow$ combine factors
$(x + \frac{5}{4})^2 = \frac{17}{16} \leftarrow$ square roots of by sides	$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}$
$x + \frac{5}{4} = \pm \sqrt{\frac{17}{16}} = \pm \frac{\sqrt{17}}{4}$	Square root both sides: $x + \frac{b}{2a} = \frac{\pm\sqrt{b^2 - 4ac}}{\sqrt{4a^2}}$
$x = \frac{-5}{4} \pm \frac{\sqrt{17}}{4}$	$x = -\frac{b}{2a} + \frac{\pm\sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \leftarrow$ solved; proof.

$$x = \frac{-5 \pm \sqrt{17}}{4}$$

Example 1: Find the real roots of an equation.

a) $2x^2 + 9x + 6 = 0$

$a = 2$

$b = 9$

$c = 6$

Substitute into formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-9 \pm \sqrt{9^2 - 4(2)(6)}}{2(2)}$$

1. $2x^2 + 9x + 6 = 0$

$a = 2$

$b = 9$

$c = 6$

Solve for x:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-9 \pm \sqrt{9^2 - 4(2)(6)}}{2(2)}$$

$$x = \frac{-9 \pm \sqrt{81 - 48}}{4}$$

$$x = \frac{-9 \pm \sqrt{33}}{4}$$

The exact roots are:

root 1:

$$x_1 = \frac{-9 + \sqrt{33}}{4} \cong -0.81$$

root 2:

$$x_2 = \frac{-9 - \sqrt{33}}{4} \cong -3.69$$

$$X_s = \frac{-0.81 + -3.69}{2} = \frac{-4.50}{2} = -2.25$$

Formula for axis of symmetry:

$$X_s = \frac{-b}{2a} = \frac{-9}{4} = -2.25$$

Vertex

$$y = 2x^2 + 9x + 6$$

$$y = f(x) = f\left(\frac{-9}{4}\right) = 2x^2 + 9x + 6$$

$$f\left(\frac{-9}{4}\right) = f\left(\frac{-9}{4}\right) = 2\left(\frac{-9}{4}\right)^2 + 9\left(\frac{-9}{4}\right) + 6$$

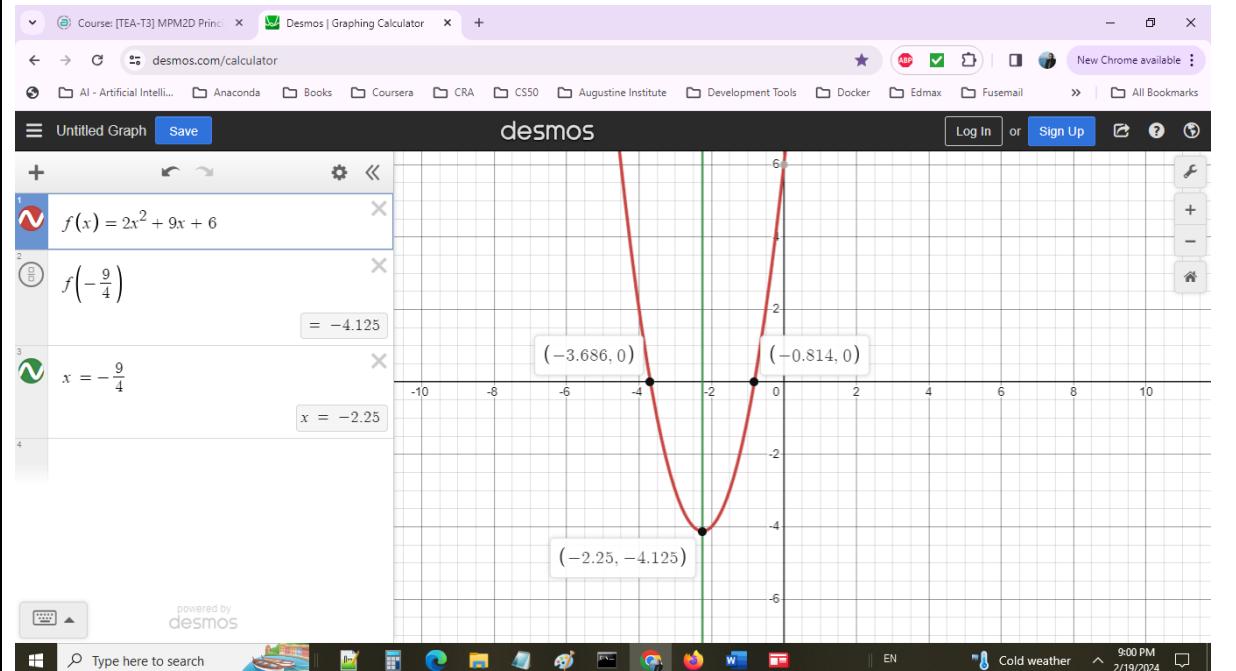
$$f\left(\frac{-9}{4}\right) = 2\left(\frac{81}{16}\right) + \left(\frac{-81}{4}\right) + 6$$

$$f\left(\frac{-9}{4}\right) = \left(\frac{81}{8}\right) + \left(\frac{-162}{8}\right) + 6$$

$$f\left(\frac{-9}{4}\right) = \left(\frac{81}{8}\right) + \left(\frac{-162}{8}\right) + 6$$

$$f\left(\frac{-9}{4}\right) = \left(\frac{-81}{8}\right) + 6 = \left(\frac{-81}{8}\right) + \left(\frac{48}{8}\right)$$

$$f\left(\frac{-9}{4}\right) = \left(\frac{-81}{8}\right) + \left(\frac{48}{8}\right) = \left(\frac{-33}{8}\right) = -4.125$$



$$2. \quad 4x^2 - 12x = -9$$

rewrite into the form: $ax^2 + bx + c = 0$

$$4x^2 - 12x + 9 = -9 + 9$$

$$4x^2 - 12x + 9 = 0$$

$$a = 4$$

$$b = -12$$

$$c = 9$$

Solve for x:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-12 \pm \sqrt{(-12)^2 - 4(4)(9)}}{2(4)}$$

$$x = \frac{-12 \pm \sqrt{144 - 144}}{2(4)} = \frac{-(-12)}{2(4)} = \frac{3}{2} = 1.50$$

$$D = \pm \sqrt{b^2 - 4ac} = \pm \sqrt{(-12)^2 - 4(4)(9)} = \sqrt{(-12)^2 - 4(4)(9)}$$

$$D = \pm \sqrt{(-12)^2 - 4(4)(9)} = \pm \sqrt{144 - 144} = 0$$

The discriminant, D, is zero. This means there is double root, which are the same.

\therefore the graphic only touches the x-axis at only one point.

Axis of Symmetry:

$$X_s = \frac{-b}{2a} = \frac{-(-12)}{2(4)} = \frac{3}{2} = 1.50$$

Vertex

$$y = 4x^2 - 12x + 9$$

$$y = f\left(\frac{3}{2}\right) = f\left(\frac{3}{2}\right) = 4\left(\frac{3}{2}\right)^2 - 12\left(\frac{3}{2}\right) + 9$$

$$y = f\left(\frac{3}{2}\right) = 4\left(\frac{3}{2}\right)^2 - 12\left(\frac{3}{2}\right) + 9$$

$$y = f\left(\frac{3}{2}\right) = 4\left(\frac{3}{2}\right)^2 - 12\left(\frac{3}{2}\right) + 9$$

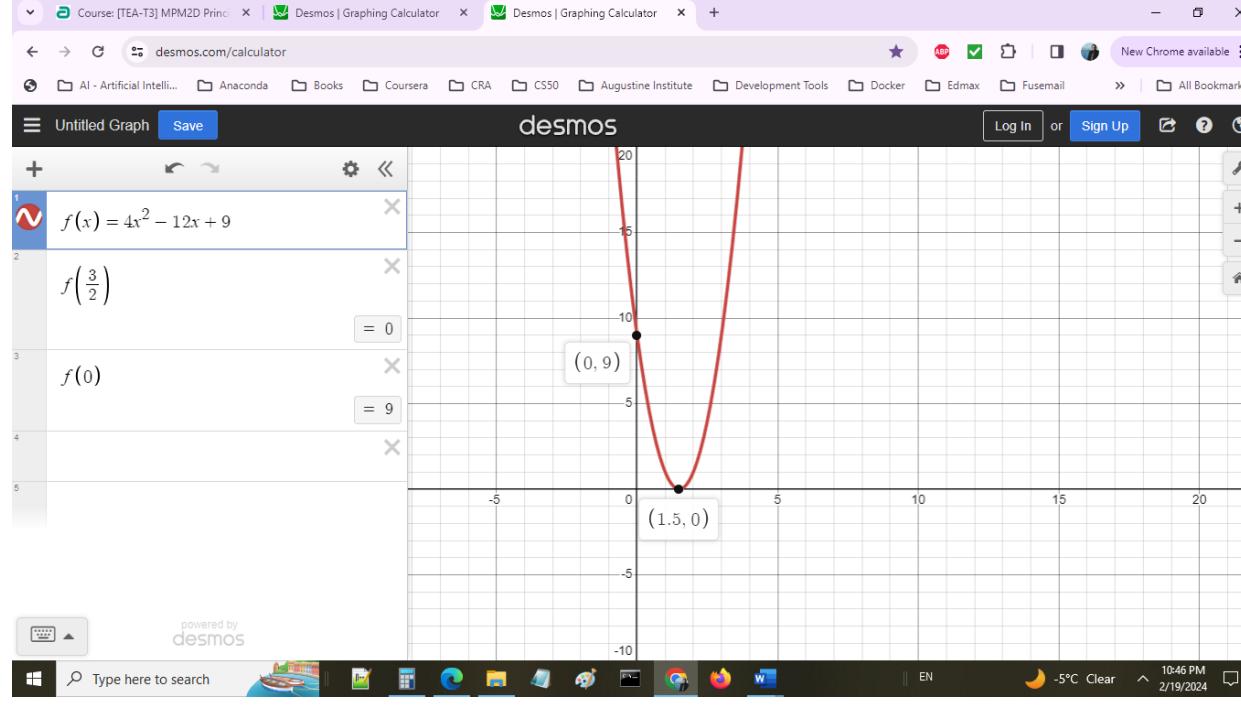
$$y = f\left(\frac{3}{2}\right) = 4\left(\frac{9}{4}\right) - 12\left(\frac{3}{2}\right) + 9$$

$$y = f\left(\frac{3}{2}\right) = 4\left(\frac{9}{4}\right) - 12\left(\frac{3}{2}\right) + 9$$

$$y = f\left(\frac{3}{2}\right) = \left(\frac{18}{2}\right) - \left(\frac{36}{2}\right) + 9$$

$$y = f\left(\frac{3}{2}\right) = 9 - 18 + 9 = 0$$

$$\text{vertex}(x,y) = \left(\left(\frac{3}{2}\right), 0\right)$$



Topic: Interpreting Quadratic Equation Roots:

Goal: Determine the number of roots of a quadratic equation, and relate these roots to the corresponding relation.

Quadratic relations may have two, one, or no x-intercepts illustrated by the following examples:

1. $-x^2 + x + 6 = 0$, has two roots
2. $x^2 - 6x + 9 = 0$, has one root
3. $2x^2 - 4x + 5 = 0$, has no roots.

Please see page 344 of the Nelson text book.

Case (1)

$$1. \quad -x^2 + x + 6 = 0$$

$$a = -1$$

$$b = 1$$

$$c = 6$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solve for x:

$$x = \frac{-1 \pm \sqrt{1^2 - 4(-1)(6)}}{2(-1)}$$

$$x = \frac{-1 \pm \sqrt{1+24}}{2(-1)}$$

$$x = \frac{-1 \pm \sqrt{25}}{2(-1)}$$

The exact roots are:

root 1:

$$x_1 = \frac{-1 \pm \sqrt{25}}{-2} = \frac{-1+5}{-2} = \frac{-1+5}{-2} = \frac{4}{-2} = -2.0$$

root 2:

$$x_2 = \frac{-1 - \sqrt{25}}{-2} = \frac{-1-5}{-2} = \frac{-6}{-2} = \frac{-6}{-2} = 3.0$$

$$X_s = \frac{-2.0 + 3.0}{2} = \frac{1}{2}$$

Formula for axis of symmetry:

$$X_s = \frac{-b}{2a} = \frac{-b}{2a} = \frac{-1}{2(-1)} = \frac{1}{2}$$

Vertex

$$y = -x^2 + x + 6$$

$$y = f(x) = f\left(\frac{1}{2}\right) = -x^2 + x + 6$$

$$f\left(\frac{1}{2}\right) = f\left(\frac{1}{2}\right) = -x^2 + x + 6$$

$$f\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right) + 6$$

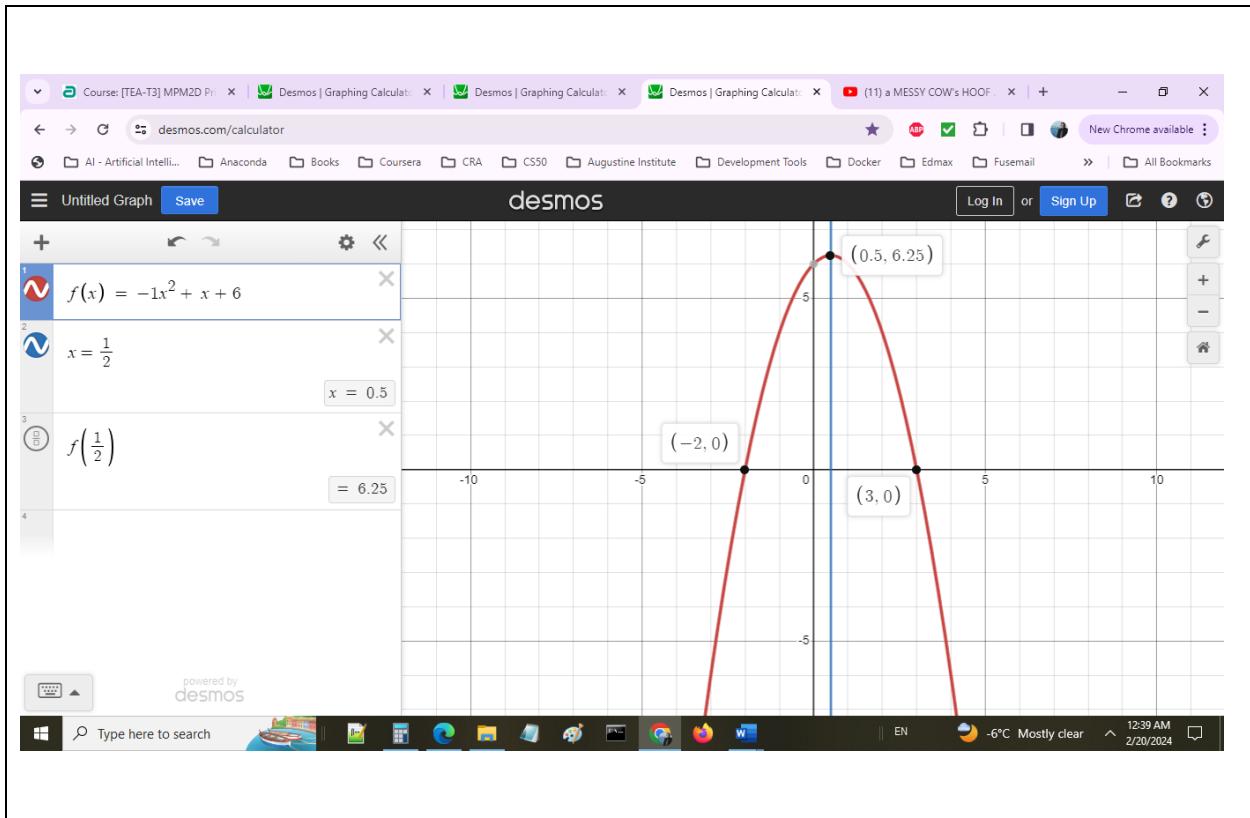
$$f\left(\frac{1}{2}\right) = -\left(\frac{1}{4}\right) + \left(\frac{1}{2}\right) + 6$$

$$f\left(\frac{1}{2}\right) = -\left(\frac{1}{4}\right) + \left(\frac{2}{4}\right) + 6$$

$$f\left(\frac{1}{2}\right) = \left(\frac{25}{4}\right) = 6.25$$

$$\text{Vertex}(x, y) = \left(\frac{1}{2}\right), \left(\frac{25}{4}\right) = (0.50, 6.25)$$

1. **$-x^2 + x + 6 = 0$, has two roots**, that means that the graph will have two x-intercepts, $P_1 = (-2, 0)$, $P_2 = (3, 0)$, with vertex $(x, y) = \left(\frac{1}{2}\right), \left(\frac{25}{4}\right) = (0.50, 6.25)$



Case (2)

$$2. \quad x^2 - 6x + 9 = 0$$

$$a = 1$$

$$b = -6$$

$$c = 9$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solve for x:

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(9)}}{2(1)}$$

$$x = \frac{6 \pm \sqrt{36 - 36}}{2(1)}$$

$$x = \frac{6 \pm \sqrt{0}}{2(1)} = \frac{6}{2} = 3$$

$$D = \pm \sqrt{b^2 - 4ac} = \pm \sqrt{(-6)^2 - 4(1)(9)} = \sqrt{(-6)^2 - 4(1)(9)}$$

$$D = \pm \sqrt{36 - 36} = \sqrt{0} = 0$$

The discriminant, D, is zero. This means there is double root, which are the same.

\therefore the graphic only touches the x-axis at only one point.

Formula for axis of symmetry:

$$x_s = \frac{-b}{2a} = \frac{-b}{2a} = \frac{-(-6)}{2(1)} = \frac{6}{2} = \frac{6}{2} = 3$$

Vertex

$$y = x^2 - 6x + 9$$

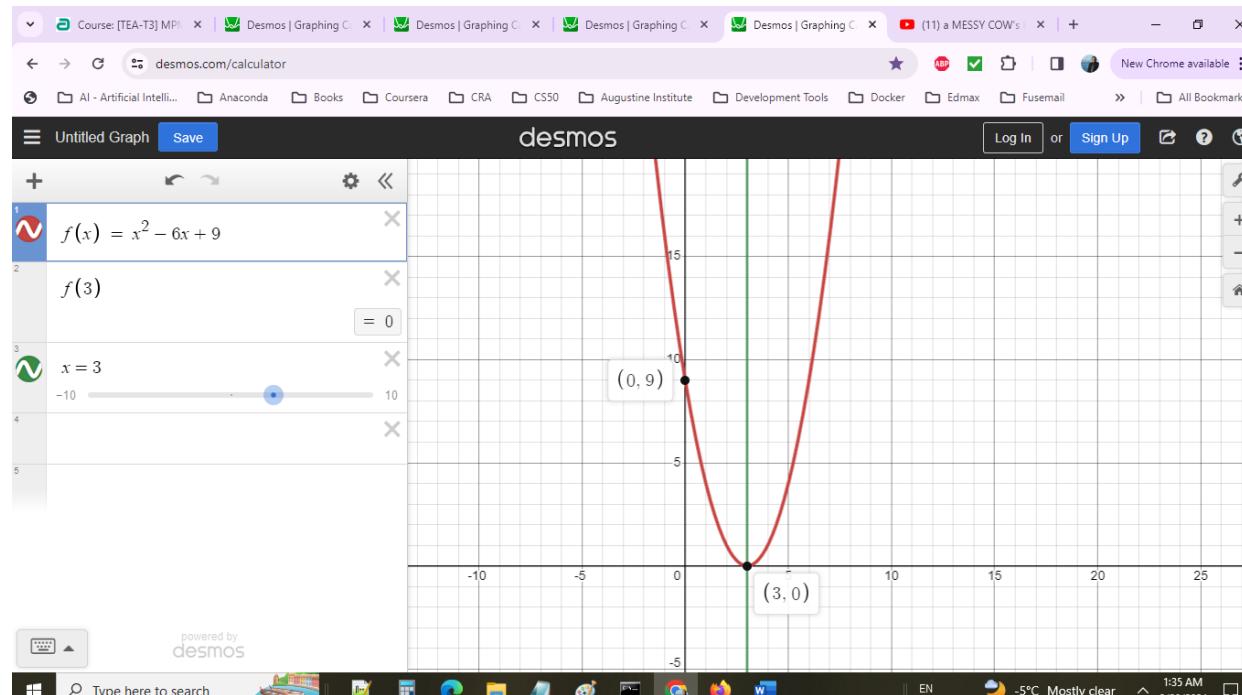
$$y = f(x) = f(3) = (3)^2 - 6(3) + 9$$

$$f(3) = (3)^2 - 6(3) + 9$$

$$f(3) = 9 - 18 + 9 = 0$$

Vertex(x, y) = (3.0, 0)

2. $x^2 - 6x + 9 = 0$, has one root, that means that the graph will have one x-intercept, $P_1 = (3, 0)$, with vertex $(x, y) = (3.0, 0)$



Case (3)

$$3. \quad 2x^2 - 4x + 5 = 0$$

$$a = 2$$

$$b = -4$$

$$c = 5$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solve for x:

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(5)}}{2(2)}$$

$$x = \frac{4 \pm \sqrt{16 - 40}}{2(1)}$$

$$x = \frac{4 \pm \sqrt{-24}}{2(1)}$$

$$D = \pm \sqrt{16 - 40}$$

$$D = \pm \sqrt{-24}$$

The discriminant, D, has a negative square root, $\sqrt{-24}$. This means there are zero roots, for the quadratic equation -4, that is, no solutions.

\therefore the graphic never crosses the x-axis.

Formula for axis of symmetry:

$$xs = \frac{-b}{2a} = \frac{-(-4)}{2(2)} = \frac{-(-4)}{2(2)} = \frac{4}{4} = 1$$

Vertex

$$y = 2x^2 - 4x + 5$$

$$y = f(x) = f(1) = 2x^2 - 4x + 5$$

$$f(1) = 2(1)^2 - 4(1) + 5$$

$$f(1) = 2(1)^2 - 4(1) + 5$$

$$f(1) = 2 - 4 + 5$$

$$f(1) = 7 - 4 = 3$$

Vertex $(x, y) = (1, 3)$

Y-intercept, when $x = 0$

$$f(0) = 2x^2 - 4x + 5$$

$$f(0) = 2(0)^2 - 4(0) + 5$$

$$f(0) = 5$$

Y-intercept, when $x = 0$, occurs at $y = 5$.

3. $2x^2 - 4x + 5 = 0$, has no roots, that means that the graph will have no x-intercepts, but with vertex $(x, y) = (1, 3)$, the y-intercept is at $(0, 5)$. See graph below for details.

