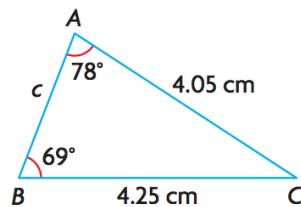

Chapter 7 & 8 Assignment: Trigonometry

Part 1: Knowledge (10 marks)


1. (5 marks) Determine the indicated side length or angle measure in each triangle.

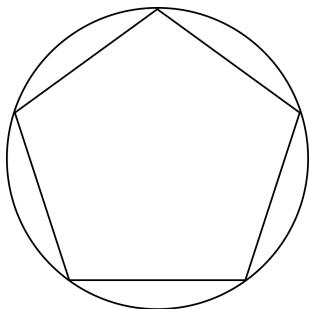
***Use sine law for one question and cosine for the other.

a)

b)

2. (3 marks) Determine each unknown value. Round your answer to one decimal place.

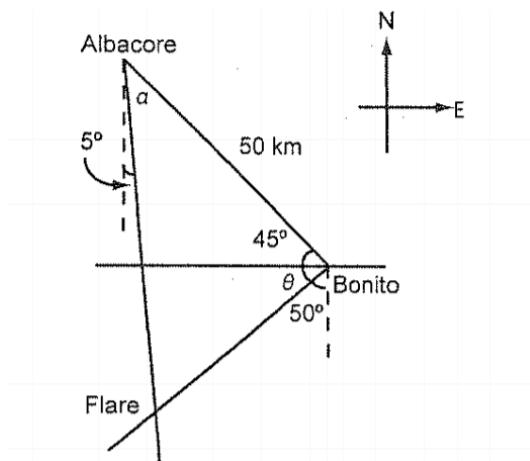
$$a) \sin 28^\circ = \frac{x}{5}$$


$$b) \cos B = \frac{7}{9}$$

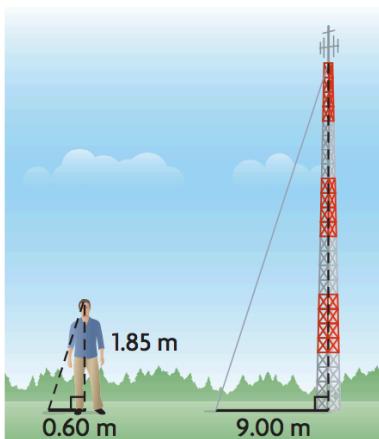
3. (2 marks) Define similar triangle.

Part 2: Thinking (10 marks)

4. (5 marks) Determine the acute angle to the nearest degree at which $y = -2x - 1$ and $y = x + 3$ intersect. Include a diagram.


5. (5 marks) A regular pentagon is inscribed in a circle with radius of 12 as shown in the diagram. Determine the perimeter and area of the pentagon. Keep answer with 1 decimal places.

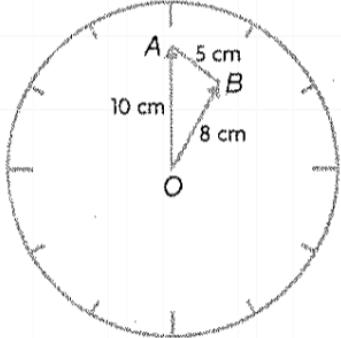
Part 3: Application (10 marks)


6. (5 marks) A pilot who is heading due north spots two forest fires. The fire that is due east is at an angle of depression of 47° . The fire that is due west is at an angle of depression of 38° . What is the distance between the two fires, to the nearest metre, if the altitude of the airplane is 2400? Include a diagram.

7. (5 marks) Two ships, the Albacore and the Bonito, are 50 km apart. The Albacore is $N45^\circ W$ (North 45° towards West) of the Bonito. The Albacore sights a distress flare at $S5^\circ E$. The Bonito sights the distress flare at $S50^\circ W$. How far is each ship from the distress flare?

Part 4: Communication (10 marks)

8. (4 marks) **Explain** how to prove the following two triangles are similar. And determine the height of the radio tower.


9. (6 marks) **Create** a real-life problem that can be modelled by an acute triangle. Then **describe** the problem, **sketch** the situation in your problem, and **explain** what must be done to solve it.

Here is a sample answer:

Problem: The minute hand of a clock is pointing at the number 12 and is 10 cm long. The hour hand is 8 cm long. The distance between the tips of the hands is 5 cm. What time could it be?

Solution:

Draw a diagram to model the problem.

I can use the cosine law to solve for $\angle O$ because I know all three side lengths.

$$o^2 = b^2 + a^2 - 2ba \cos O$$

$$5^2 = 10^2 + 8^2 - 2(10)(8) \cos O$$

$$25 = 100 + 64 - 160 \cos O$$

$$-139 = -160 \cos O$$

$$\frac{-139}{-160} = \cos O$$

$$\angle O = \cos^{-1}\left(\frac{139}{160}\right)$$

$$\angle O \approx 30^\circ$$

A 30° angle is $\frac{1}{12}$ of the circular clock face

$360^\circ \div 30^\circ = 12$, which means the hands are one number apart.

There are two possible times depending on where the hour hand is positioned, behind or ahead of the minute hand, 1 o'clock or 11 o'clock.