

Graphing and Finding Equations

 1. Summarize the steps of sketching polynomials given **expanded form**. Explain what details you still don't know about the graph.

2. Sketch each of the following

 a. $f(x) = 4x^2 - 5x^{\textcircled{5}} + x - 1$

Degree = 5 \Rightarrow odd
L.C. = -5 ↑
 ↓

b. $f(x) = 3 - 7x + 8x^4 - x^3$

 c. $f(x) = 11x - 9x^4 + 10x^7$

d. $f(x) = -6x^6 + 8x^2 - x^3 + 9$

 3. Summarize the steps of sketching polynomials given **factored form**. Explain what details you still don't know about the graph.

4. Sketch each of the following

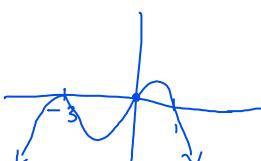
 a. $y = x^{\textcircled{1}}(x + 3)^2(2 - 2x)^1$

Degree = $1+2+1 = 4$ Even
L.C. = $(1)(1)(-2) = -2$ ↓
zeros: 0, -3 (order 2), 1 ↓

y-int: $y = 0$ t.p. =

c. $y = (2 - x)^3$

b. $y = (x + 3)^2(2 - 4x)^2$



d. positive leading coefficient,
zeros at -3, -1 (order 5), 2, 4 (order 4)

Sketch each of the following

e. $y = -x(x+2)^3(1-x)^4$

f. $y = -3(2x+4)^2(x-1)$

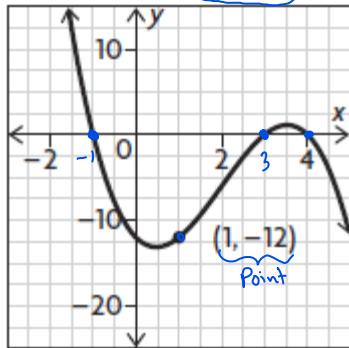
g. $y = (6-2x)^4$

h. $y = (2x+3)^3(5-x)$

factored form

5. Find the **equations** for the given graphs

$y = a(x)(x)(x)$

a. polynomial of degree 3 with the following graph

* Cannot use the zero as a point!

Zeroes: $-1, 3, 4$
 $y = a(x+1)(x-3)(x-4)$
 sub point $(1, -12)$
 $-12 = a(1+1)(1-3)(1-4)$
 $-12 = (2)(-2)(-3)a$
 $-12 = +12a$
 $-1 = a$
 $\therefore y = -(x+1)(x-3)(x-4)$

b. The function is cubic with zeros at 4(order 2) and -1 and with a y-intercept of 10. exponent 2

$y = a(x-4)^2(x+1)$ point $(0, 10)$
 $10 = a(0-4)^2(0+1)$
 $10 = 16a$
 $\frac{10}{16} = a$
 $\frac{10}{16} \times \frac{5}{5} = a$
 reduced fraction
 $\therefore y = \frac{5}{8}(x-4)^2(x+1)$

6. The function $f(x) = kx^3 + 20x^2 - 8x - 96$ has a zero when $x = -3$. Determine the value of k .

$$0 = k(-3)^3 + 20(-3)^2 - 8(-3) - 96 \quad f(x) = y = 0$$

$$k = 4$$

Transformed Form of Polynomials

$$y = a[k(x-d)]^n + c$$

* factor k so nothing in front of x !

1. Write out the transformed form of a polynomial of degree n . Summarize what type of transformations the letters control and recap the steps of transforming a function.

$a \rightarrow$ reflection in x -axis when $a < 0$

\rightarrow vertical stretch ($|a| > 1$) or compress ($0 < |a| < 1$) by " $|a|$ "

$k \rightarrow$ reflection in y -axis when $k < 0$

\rightarrow horizontal stretch ($0 < |k| < 1$) or compress ($|k| > 1$) by " $\frac{1}{|k|}$ "

$d \rightarrow$ Horizontal shift left ($d < 0$) or right ($d > 0$)

$c \rightarrow$ Vertical shift down ($c < 0$) or up ($c > 0$)

$$y = a[k(x-d)]^n + c$$

$$\begin{array}{c} \text{Parent function} \rightarrow \text{transformed function} \\ \hline x \mid f(x) \quad \rightarrow \quad \frac{x}{k} + d \mid ay + c \end{array}$$

2. Sketch the following

a. **Eg.** $f(x) = -2(\frac{1}{4}x - 1)^3 - 8$

$$a = -2$$

$$K = \frac{1}{4}$$

$$d = 4$$

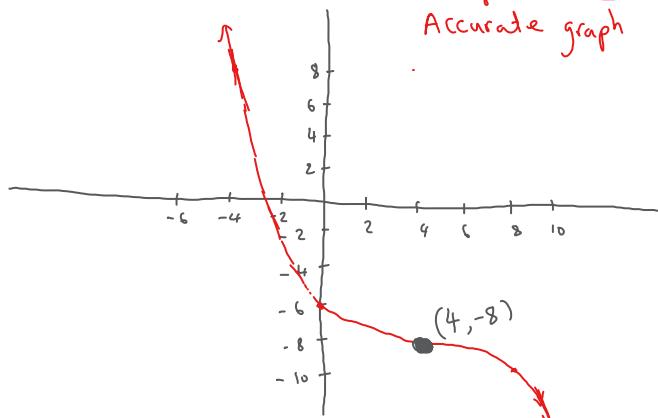
$$c = -8$$

Parent function: $y = x^3$

x	y: x^3
-2	-8
-1	-1
0	0
1	1
2	8

transformed func.
 $\frac{x}{4} = 4x + 4$
 $(x+d, ay+c)$

x	y
4x + 4	-2y - 8
-2(-2) + 4 = -4	-2(-8) - 8 = 8
-2(-1) + 4 = 0	-2(-1) - 8 = -6
-2(0) + 4 = 4	-2(0) - 8 = -8
-2(1) + 4 = 8	-2(1) - 8 = -10
-2(2) + 4 = 12	-2(2) - 8 = -24

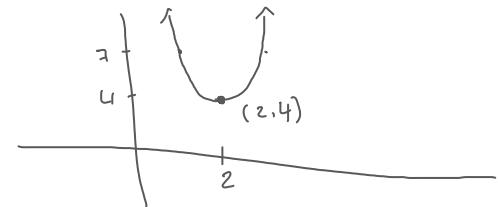


b. $f(x) = 3(10 - 5x)^4 + 4$
 $= 3[-5(x-2)]^4 + 4$

Parent function \rightarrow transformed func.

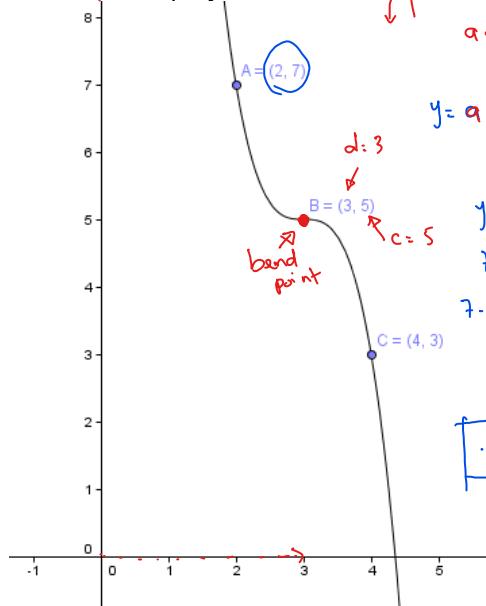
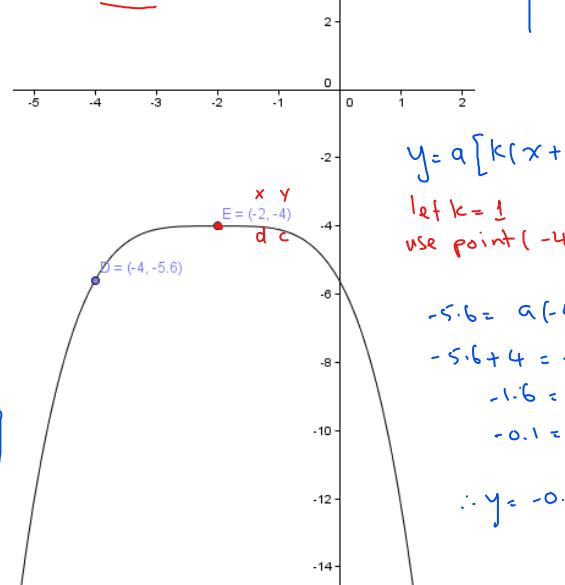
x	y = x^4
-1	1
0	0
1	1

$\frac{x}{5} + 2$	$3y + 4$
$\frac{11}{5} = 2.2$	7
2	4
$\frac{9}{5} = 1.8$	7

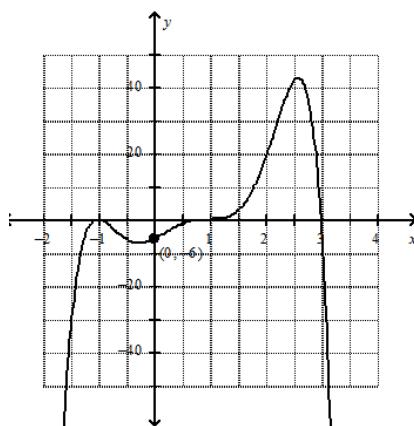


3. Explain why it is important to follow the steps outlined above instead of just taking the x values below and just plugging them into the equation. Use question a. as an example in your explanation.

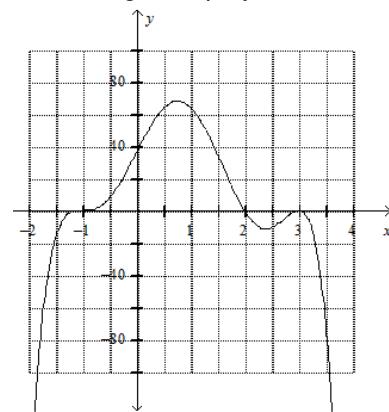
x	y
-2	
-1	
0	
1	
2	

$y = a[k(x-d)]^n + c$ $n > 4$ degreelet $k=1$ then solve for a quintic $\Rightarrow n=5$ 4. Find the equations for the following graphs. Be careful not all pictures represent a transformed form of a parent!!!a. Cubic polynomial $n=3$ b. Quartic polynomial $n=4$ c. Degree 6 polynomial

factored form

d. Degree 6 polynomial

factored form.



5. Determine the zeros of the following polynomials

a. $y = 3(4x - 8)^4 - 243$

$$\begin{aligned}
 & \text{Set } y=0, \text{ solve for } x. \\
 & 0 = 3(4x - 8)^4 - 243 \\
 & 243 = 3(4x - 8)^4 \\
 & \frac{243}{3} = (4x - 8)^4 \\
 & 81 = (4x - 8)^4 \\
 & \pm \sqrt[4]{81} = 4x - 8 \\
 & \pm 3 + 8 = 4x \\
 & \frac{\pm 3 + 8}{4} = x \\
 & x_1 = \frac{3+8}{4} \quad \text{or} \quad x_2 = \frac{-3+8}{4} \\
 & = \frac{11}{4} \quad = \frac{5}{4}
 \end{aligned}$$

b. $y = 2(2x - 10)^3 + 128$

$$\begin{aligned}
 & 0 = 2(2x - 10)^3 + 128 \\
 & -128 = 2(2x - 10)^3 \\
 & \frac{-128}{2} = (2x - 10)^3 \\
 & \sqrt[3]{-64} = 2x - 10 \\
 & -4 = 2x - 10 \\
 & \frac{6}{2} = x \\
 & 3 = x
 \end{aligned}$$

odd root
No ±

c. Why can't the above method be used on the following $y = -5x^4 - 4x^2 + 1$?

d. What method do you know of that could help you find the roots of $y = -5x^4 - 4x^2 + 1$?

e. Would the method you used for d. work on $y = -5x^4 - 4x^3 + 1$?