

TEAM.

4. Find the remainder (without doing the division) of $f(x) = 2x^5 + 4x^4 - 5x^3 - 6x^2 + 2x - 4$ when it is divided by $x + 3$

Team

5. If the divisor is $x^2 + 5x + 8$, the dividend is $x^4 - 5x^3 + 3x^2 - 7x + 11$. Find the remainder.

$$\therefore R = -91 \quad \checkmark$$

$$\therefore R = -152x - 349 \quad \checkmark \quad \checkmark$$

6. If the dividend is $-2x^4 - 5x^3 + 2x^2 + 3x - 1$, quotient is $-2x^3 - 7x^2 - 5x - 2$ and remainder is -3 , find the divisor by using comparing coefficients method.

$$-2x^4 - 5x^3 + 2x^2 + 3x - 1 = (-2x^3 - 7x^2 - 5x - 2)(ax + b) - 3$$

compare x^4

$$\begin{array}{r} -2x^4 = -2ax^4 \\ \hline -2x^4 \quad -2x^4 \\ \text{isolate} \\ 1 = a \end{array} \quad \checkmark$$

compare constant term

$$\begin{array}{r} -1 = -2b - 3 \\ +3 \\ \hline 2 = -2b \end{array}$$

$$\begin{array}{r} 2 = -2b \\ \hline -1 = b \end{array} \quad \checkmark \quad \therefore \text{Divisor is} \quad (x-1) \quad \checkmark$$

7. Remind yourself what is the definition of the word "factor"

↳ divides evenly

or remainder is zero.

by remainder theorem $f(a) = 0$ $\cancel{\text{see this}}$ ¹⁴ in factor th.